Electrical and Structural Characterization of Boron Implanted Silicon Following Laser Thermal Processing

2002 ◽  
Vol 717 ◽  
Author(s):  
K. A. Gable ◽  
K. S. Jones ◽  
M. E. Law ◽  
L. S. Robertson ◽  
S. Talwar

AbstractOne alternative to conventional rapid thermal annealing (RTA) of implants for ultra-shallow junction formation is that of laser annealing. Laser thermal processing (LTP) incorporates an excimer pulsed laser capable of melting the near surface region of the silicon (Si) substrate. The melt depth is dependent upon the energy density supplied by the irradiation source and the melting temperature of the substrate surface. A process window associated with this technique is able to produce similar junction depths over a range of energy densities due to the melting temperature depression established with pre-amorphization of the substrate surface prior to dopant incorporation. The process window of germanium (Ge) preamorphized, boron (B) doped Si was investigated. 200 mm (100) n-type Si wafers were preamorphized via 18 keV Ge+ implantation to 1x1015/cm2 and subsequently implanted with 1 keV B+ to doses of 1x1015/cm2, 3x1015/cm2, 6x1015/cm2, and 9x1015/cm2. The wafers were laser annealed from 0.50 J/cm2 to 0.88 J/cm2 using a 308 nm XeCl excimer irradiation source. Transmission electron microscopy (TEM) was used to determine the process window for each implant condition, and correlations between process window translation and impurity concentration were made. Four-point probe quantified dopant activation and subsequent deactivation upon post-LTP furnace annealing.

2002 ◽  
Vol 717 ◽  
Author(s):  
Erik Kuryliw ◽  
Kevin S. Jones ◽  
David Sing ◽  
Michael J. Rendon ◽  
Somit Talwar

AbstractLaser Thermal Processing (LTP) involves laser melting of an implantation induced preamorphized layer to form highly doped ultra shallow junctions in silicon. In theory, a large number of interstitials remain in the end of range (EOR) just below the laser-formed junction. There is also the possibility of quenching in point defects during the liquid phase epitaxial regrowth of the melt region. Since post processing anneals are inevitable, it is necessary to understand both the behavior of these interstitials and the nature of point defects in the recrystallized-melt region since they can directly affect deactivation and enhanced diffusion. In this study, an amorphizing 15 keV 1 x 1015/cm2 Si+ implant was done followed by a 1 keV 1 x 1014/cm2 B+ implant. The surface was then laser melted at energy densities between 0.74 and 0.9 J/cm2 using a 308 nm excimer-laser. It was found that laser energy densities above 0.81 J/cm2 melted past the amorphous-crystalline interface. Post-LTP furnace anneals were performed at 750°C for 2 and 4 hours. Transmission electron microscopy was used to analyze the defect formation after LTP and following furnace anneals. Secondary ion mass spectrometry measured the initial and final boron profiles. It was observed that increasing the laser energy density led to increased dislocation loop formation and increased diffusion after the furnace anneal. A maximum loop density and diffusion was observed at the end of the process window, suggesting a correlation between the crystallization defects and the interstitial evolution.


1991 ◽  
Vol 238 ◽  
Author(s):  
A. J. Pedraza ◽  
M. J. Godbole ◽  
L. Romana

ABSTRACTSapphire substrates, mechanically polished to an optical finish, were annealed for two days at either 1000°C or 1350°C. The near surface condition of as-polished and of the annealed substrates was analyzed by Rutherford backscattering/channeling (RBS-C) and by scanning electron microscopy/channeling (SEM-C), by transmission electron microscopy (TEM), and by scanning tunnelling microscopy (STM). The polished substrates were found to be RBS-amorphous up to 100 nm, and heavily damaged at larger depths. In agreement with these results, no electron channeling was obtained from polished samples. TEM, however, showed that the damaged region was crystalline, and the only defects detected were microtwins. Both RBS-C and SEM-C analyses revealed that the damage is removed when the sapphire substrates are annealed for 48 hrs. at 1350°C. The condition of the near-surface region, viz., as-polished or annealed, is found to strongly affect the morphology of the laser-irradiated copper films deposited on sapphire substrates. A correlation is found between the threshold for film evaporation and for film rupture upon laser irradiation, both being a function of the substrate condition. It is concluded that the near-surface damaged layer acts as a thermal barrier for heat transport across the substrate.


2007 ◽  
Vol 7 (12) ◽  
pp. 4378-4390 ◽  
Author(s):  
Anuradha Somayaji ◽  
Ramoun Mourhatch ◽  
Pranesh B. Aswath

Tribofilms with thickness ranging from 100–200 nm were developed in-situ during wear tests using a zinc dialkyl dithiophosphates (ZDDP) and fluorinated ZDDP (F-ZDDP). The influence of the antioxidant alkylated diphenyl amine on the formation and properties of these tribofilm is examined. Results indicate that the thickness of the tribofilms formed when F-ZDDP is used is always thicker than the tribofilm formed with ZDDP. In addition, in the presence of antioxidants the tribofilm thickness is increased. The hardness of these tribofilms in the absence of the antioxidants is significantly higher at the near surface region (0–30 nm) when compared to the films formed in the presence of antioxidant. Nanoscratch tests conducted to examine the abrasion resistance of the tribofilms also indicate that the tribofilms formed by F-ZDDP are more resistant to scratch compared to films formed by ZDDP. In the presence of antioxidant, tribofilms formed by F-ZDDP are significantly thicker while both films behave in a similar fashion in nanoscratch tests. Transmission electron microscopy of the wear debris formed during the tests were examined and results indicate the nucleation and growth of nanoparticles of Fe3O4 with an approximate size of 5–10 nm embedded within an otherwise amorphous tribofilm.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2000 ◽  
Vol 610 ◽  
Author(s):  
Susan Earles ◽  
Mark Law ◽  
Kevin Jones ◽  
Rich Brindos ◽  
omit Talwar

AbstractTo investigate the effects of ramp rate on the transient enhanced diffusion of boron in silicon, laser thermal processing (LTP) in the nonmelt regime has been investigated. A nonmelt laser anneal has been performed on a 5 keV, 1e15 boron implant. The implant energy of 5keV was chosen to simplify analysis. A rapid thermal anneal (RTA) at 1000°C and furnace anneals at 750 °C were used to show the effect of post annealing on the LTPd samples. Results show the sheet resistance drops by up to a factor of two for samples receiving the nonmelt LTP and the RTA compared with the samples just receiving the RTA. An increase in the hall mobility was also observed for the samples receiving the LTP. The nonmelt LTP was also shown to strongly affect the extended defect density. During post anneals, a higher density of smaller defects evolved in the samples receiving the LTP.


2001 ◽  
Vol 669 ◽  
Author(s):  
Susan Earles ◽  
Mark Law ◽  
Kevin Jones ◽  
Somit Talwar ◽  
Sean Corcoran

ABSTRACTHeavily-doped, ultra-shallow junctions in boron implanted silicon using pulsed laser annealing have been created. Laser energy in the nonmelt regime has been supplied to the silicon surface at a ramp rategreater than 1010°C/sec. This rapid ramp rate will help decrease dopant diffusion while supplying enough energy to the surface to produce dopant activation. High-dose, non-amorphizing 1 keV, 1e15 ions/cm2 boron is used. Four-point probe measurements (FPP) show a drop in sheet resistance withnonmelt laser annealing (NLA) alone. Transmission electron microscopy (TEM) shows the NLA dramatically affects the defect nucleation resulting in fewer defects with post annealing. Hall mobility and secondary ion mass spectroscopy (SIMS) results are also shown.


2001 ◽  
Vol 703 ◽  
Author(s):  
A. Meldrum ◽  
K.S. Beaty ◽  
M. Lam ◽  
C.W. White ◽  
R.A. Zuhr ◽  
...  

ABSTRACTIon implantation and thermal processing were used to create a layer of Co nanoclusters embedded in the near-surface region of single-crystal sapphire. The Co nanoparticles ranged in size from 2-20 nm and were crystallographically aligned with the host sapphire. Specimens were irradiated with Xe and Pt ions, and the microstructural evolution of the nanoclusters was investigated by transmission electron microscopy. With increasing Pt or Xe ion dose, the Co nanoparticles lost their initially excellent faceting, although they remained crystalline. The host Al2O3 became amorphous and the resulting microstructure consisted of a buried amorphous layer containing the still-crystalline Co nanoparticles. EDS mapping and electron diffraction were used to determine the distribution of the implanted species, and the magnetic properties of the composite were measured with a SQUID magnetometer. The results show that ion beams can be applied to modify and control the properties of ferromagnetic nanocomposites, and, combined with lithographic techniques, will find applications in exercising fine-scale spatial control over the properties of magnetic materials.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. T. Crosby ◽  
L. Radic ◽  
K. S. Jones ◽  
M. E. Law ◽  
P.E. Thompson ◽  
...  

ABSTRACTThe relationships between Boron Interstitial Cluster (BIC) evolution and boron diffusion in relaxed Si0.8Ge0.2 have been investigated. Structures were grown by Molecular Beam Epitaxy (MBE) with surface boron wells of variant composition extending 0.25 [.proportional]m into the substrate, as well as boron marker layers positioned 0.50 [.proportional]m below the surface. The boron well concentrations are as follows: 0, 7.5×1018, 1.5×1019, and 5.0×1019 atoms/cm3. The boron marker layers are approximately 3 nm wide and have a peak concentration of 5×1018 atoms/cm3. Samples were ion implanted with 60 keV Si+ at a dose of 1×1014 atoms/cm2 and subsequently annealed at 675°C and 750°C for various times. Plan-view Transmission Electron Microscopy (PTEM) was used to monitor the agglomeration of injected silicon interstitials and the evolution of extended defects in the near surface region. Secondary Ion Mass Spectroscopy (SIMS) concentration profiles facilitated the characterization of boron diffusion behaviors during annealing. Interstitial supersaturation conditions and the resultant defect structures of ion implanted relaxed Si0.8Ge0.2 in both the presence and absence of boron have been characterized.


2020 ◽  
Vol 1004 ◽  
pp. 705-711
Author(s):  
Cristiano Calabretta ◽  
Marta Agati ◽  
Massimo Zimbone ◽  
Simona Boninelli ◽  
Andrea Castiello ◽  
...  

This work describes the development of a new post-implant crystal recovery technique in 4H-SiC using XeCl (l=308 nm) multiple laser pulses in the ns regime. Characterization was carried out through micro-Raman spectroscopy, Photoluminescence (PL), Transmission Electron Microscopy (TEM) and outcomes were than compared with 1h thermally annealed at 1650-1770-1750 °C P implanted samples (source implant) and P and Al implanted samples for 30 minutes at 1650 °C (source and body implants). Experimental results demonstrate that laser annealing enables crystal recovery in the energy density range between 0.50 and 0.60 J/cm2. Unlike the results obtained with thermal annealing where stress up to 172 Mpa and high carbon vacancies (Vc) concentration is recorded, laser annealing provides almost stress free samples and much less defective crystal avoiding intra-bandgap carrier recombination. Implant was almost preserved except for step-bouncing and surface oxidation phenomena leading to surface roughening. However, the results of this work gives way to laser annealing process practicability for lattice damage recovery and dopant activation.


1985 ◽  
Vol 54 ◽  
Author(s):  
R. T. Tung ◽  
A. F. J. Levi ◽  
J. M. Gibson ◽  
K. K. Ng ◽  
A. Chantre

ABSTRACTThe Schottky barrier heights of single crystal NiSi2 layers on Si(111) have been studied by current-voltage, capacitance-voltage and activation energy techniques. Near ideal behavior is found for Schottky barriers grown on substrates cleaned at ∼820°C in ultrahigh vacuum. The Fermi level positions at the interfaces of single crystal type A and type B NiSi2 are shown to differ by ∼0.14 eV. Transmission electron microscopy demonstrated the epitaxial perfection of these suicide layers. At a cleaning temperature of 1050° C, the near surface region of lightly doped n-type Si was converted to p-type. The presence of a p-n junction was directly revealed by spreading resistance measurements and resulted in a high apparent Schottky barrier height (≥0.75 eV) which no longer bears immediate relationship to the interface Fermi level position.


Sign in / Sign up

Export Citation Format

Share Document