Electroreflectance and Photoreflectance Studies of Electric Fields in Pt/GaN Schottky Diodes and AlGaN/GaN Heterostructures

2002 ◽  
Vol 743 ◽  
Author(s):  
S. Shokhovets ◽  
R. Goldhahn ◽  
G. Gobsch ◽  
O. Ambacher ◽  
I. P. Smorchkova ◽  
...  

ABSTRACTWe have performed electroreflectance and photoreflectance studies of Pt/GaN Schottky diodes with Ga- and N-face polarity as well as AlGaN/GaN based transistor heterostructures. The experimental data were analyzed using electric field-dependent dielectric functions of GaN and AlGaN. Inhomogeneities in the electric fields were taken into account by application of a multi-layer formalism. We observed an increase of the electric field strength underneath the Schottky contact and in the AlGaN barrier with increasing temperature. The results are explained in terms of temperature dependent densities of ionized impurities and surface charges.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262555
Author(s):  
Md. Kabir Ahamed ◽  
Marzuk Ahmed ◽  
Mohammad Abu Sayem Karal

Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.


1998 ◽  
Vol 53 (1-2) ◽  
pp. 17-26
Author(s):  
Mohamed Fahmy El-Sayed

Abstract A linear stability analysis of a novel electrohydrodynamic Kelvin-Helmholtz system consisting of the superposition of two uniformly rotating dielectric media is presented. The characteristic equation for such an arrangement is derived, which in turn yields a stability criterion for velocity differences of disturbances at a given rotation frequency. The conditions of stability for long and short wave perturbations are obtained, and their dependence on rotation, surface tension and applied electric field is discussed. Limiting cases for vanishing fluid velocities, rotation frequency, and applied electric field are also discussed. Under suitable limits, results of previous works are recovered. A detailed analysis for tangential and normal applied electric fields, in the presence and absence of surface charges, is carried out.


1993 ◽  
Vol 325 ◽  
Author(s):  
Z.C. Huang ◽  
C.R. Wie

AbstractDeep levels have been measured in molecular beam epitaxy grown Ga0.51In0.49P/GaAs heterostructure by double correlation deep level transient spectroscopy. Gold(Au) and Aluminum (Al) metals were used for Schottky contact. A contact-related hole trap with an activation energy of 0.50-0.75eV was observed at the A1/GaInP interface, but not at the Au/GaInP interface. To our knowledge, this contact-related trap has not been reported before. We attribute this trap to the oxygen contamination, or a vacancy-related defect, VIn or VGa. A new electron trap at 0.28eV was also observed in both Au- and Al-Schottky diodes. Its depth profile showed that it is a bulk trap in GaInP epilayer. The temperature dependent current-voltage characteristics (I-V-T) show a large interface recombination current at the GaInP surface due to the Al-contact. Concentration of the interface trap and the magnitude of recombination current are both reduced by a rapid thermal annealing at/or above 450°C after the aluminum deposition.


2021 ◽  
Author(s):  
◽  
Chun Yee Cheah

<p>Graphene, consisting of a single layer of carbon atoms, is being widely studied for its interesting fundamental physics and potential applications. The presence and extent of disorder play important roles in determining the electronic conduction mechanism of a conducting material. This thesis presents work on data analysis and modelling of electronic transport mechanisms in disordered carbon materials such as graphene. Based on experimental data of conductance of partially disordered graphene as measured by Gómez-Navarro et al., we propose a model of variable-range hopping (VRH) – defined as quantum tunnelling of charge carriers between localized states – consisting of a crossover from the two-dimensional (2D) electric field-assisted, temperature-driven (Pollak-Riess) VRH to 2D electric field-driven (Skhlovskii) VRH.  The novelty of our model is that the temperature-dependent and field-dependent regimes of VRH are unified by a smooth crossover where the slopes of the curves equal at a given temperature. We then derive an analytical expression which allows exact numerical calculation of the crossover fields or voltages. We further extend our crossover model to apply to disordered carbon materials of dimensionalities other than two, namely to the 3D self-assembled carbon networks by Govor et al. and quasi-1D highly-doped conducting polymers by Wang et al. Thus we illustrate the wide applicability of our crossover model to disordered carbon materials of various dimensionalities.  We further predict, in analogy to the work of Pollak and Riess, a temperature-assisted, field-driven VRH which aims to extend the field-driven expression of Shklovskii to cases wherein the temperatures are increased. We discover that such an expression gives a good fit to the data until certain limits wherein the temperatures are too high or the applied field too low. In such cases the electronic transport mechanism crosses over to Mott VRH, as expected and analogous to our crossover model described in the previous paragraph.  The second part of this thesis details a systematic data analysis and modelling of experimental data of conductance of single-wall carbon nanotube (SWNT) networks prepared by several different chemical-vapour deposition (CVD) methods by Ansaldo et al. and Lima et al. Based on our analysis, we identify and categorize the SWNT networks based on their electronic conduction mechanisms, using various theoretical models which are temperature-dependent and field-dependent. The electronic transport mechanisms of the SWNT networks can be classed into either VRH in one- and two-dimensions or fluctuation-assisted tunnelling (FAT, i.e. interrupted metallic conduction), some with additional resistance from scattering by lattice vibrations.  Most notably, for a selected network, we find further evidence for our novel VRH crossover model previously described. We further correlate the electronic transport mechanisms with the morphology of each network based on scanning electron microscopy (SEM) images. We find that SWNT networks which consist of very dense tubes show conduction behaviour consistent with the FAT model, in that they retain a finite and significant fraction of room-temperature conductance as temperatures tend toward absolute zero. On the other hand, SWNT networks which are relatively sparser show conduction behaviour consistent with the VRH model, in that conductance tends to zero as temperatures tend toward absolute zero. We complete our analysis by estimating the average hopping distance for SWNT networks exhibiting VRH conduction, and estimate an indication of the strength of barrier energies and quantum tunnelling for SWNT networks exhibiting FAT conduction.</p>


2021 ◽  
Author(s):  
◽  
Chun Yee Cheah

<p>Graphene, consisting of a single layer of carbon atoms, is being widely studied for its interesting fundamental physics and potential applications. The presence and extent of disorder play important roles in determining the electronic conduction mechanism of a conducting material. This thesis presents work on data analysis and modelling of electronic transport mechanisms in disordered carbon materials such as graphene. Based on experimental data of conductance of partially disordered graphene as measured by Gómez-Navarro et al., we propose a model of variable-range hopping (VRH) – defined as quantum tunnelling of charge carriers between localized states – consisting of a crossover from the two-dimensional (2D) electric field-assisted, temperature-driven (Pollak-Riess) VRH to 2D electric field-driven (Skhlovskii) VRH.  The novelty of our model is that the temperature-dependent and field-dependent regimes of VRH are unified by a smooth crossover where the slopes of the curves equal at a given temperature. We then derive an analytical expression which allows exact numerical calculation of the crossover fields or voltages. We further extend our crossover model to apply to disordered carbon materials of dimensionalities other than two, namely to the 3D self-assembled carbon networks by Govor et al. and quasi-1D highly-doped conducting polymers by Wang et al. Thus we illustrate the wide applicability of our crossover model to disordered carbon materials of various dimensionalities.  We further predict, in analogy to the work of Pollak and Riess, a temperature-assisted, field-driven VRH which aims to extend the field-driven expression of Shklovskii to cases wherein the temperatures are increased. We discover that such an expression gives a good fit to the data until certain limits wherein the temperatures are too high or the applied field too low. In such cases the electronic transport mechanism crosses over to Mott VRH, as expected and analogous to our crossover model described in the previous paragraph.  The second part of this thesis details a systematic data analysis and modelling of experimental data of conductance of single-wall carbon nanotube (SWNT) networks prepared by several different chemical-vapour deposition (CVD) methods by Ansaldo et al. and Lima et al. Based on our analysis, we identify and categorize the SWNT networks based on their electronic conduction mechanisms, using various theoretical models which are temperature-dependent and field-dependent. The electronic transport mechanisms of the SWNT networks can be classed into either VRH in one- and two-dimensions or fluctuation-assisted tunnelling (FAT, i.e. interrupted metallic conduction), some with additional resistance from scattering by lattice vibrations.  Most notably, for a selected network, we find further evidence for our novel VRH crossover model previously described. We further correlate the electronic transport mechanisms with the morphology of each network based on scanning electron microscopy (SEM) images. We find that SWNT networks which consist of very dense tubes show conduction behaviour consistent with the FAT model, in that they retain a finite and significant fraction of room-temperature conductance as temperatures tend toward absolute zero. On the other hand, SWNT networks which are relatively sparser show conduction behaviour consistent with the VRH model, in that conductance tends to zero as temperatures tend toward absolute zero. We complete our analysis by estimating the average hopping distance for SWNT networks exhibiting VRH conduction, and estimate an indication of the strength of barrier energies and quantum tunnelling for SWNT networks exhibiting FAT conduction.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1101
Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

Experimental data show that in laboratory sparks, X-rays are produced in time synchronization with the meeting of streamers of opposite polarity just before the final breakdown of the discharge gap. It has been suggested that the electric field enhancement created during the collision of streamers could provide the necessary conditions for electron acceleration, even though some of the theoretical studies show that the duration of the electric field is not long enough to do so. The experimental data on laboratory discharges show that. when streamers of opposite polarity meet each other, a potential or ionization wave that renders the streamer channels conducting is initiated. This paper shows that these ionization waves that convert the discharge channels from weakly conducting to highly conducting are associated with electric fields large enough to accelerate electrons to relativistic energies.


Author(s):  
Yasuhide Shindo ◽  
Takayoshi Sasakura ◽  
Fumio Narita

This paper studies the dynamic electromechanical response of multilayered piezoelectric composites under ac electric fields from room to cryogenic temperatures for fuel injector applications. A shift in the morphotropic phase boundary (MPB) between the tetragonal and rhombohedral/monoclinic phases with decreasing temperature was determined using a thermodynamic model, and the temperature dependent piezoelectric coefficients were obtained. Temperature dependent coercive electric field was also predicted based on the domain wall energy. A phenomenological model of domain wall motion was then used in a finite element computation, and the nonlinear electromechanical fields of the multilayered piezoelectric composites from room to cryogenic temperatures, due to the domain wall motion and shift in the MPB, were calculated. In addition, experimental results on the ac electric field induced strain were presented to validate the predictions.


1971 ◽  
Vol 49 (7) ◽  
pp. 876-880 ◽  
Author(s):  
Jyoti Kamal ◽  
Satish Sharma

In this paper the authors have calculated Hall mobility, drift mobility, and Hall constant for a non-degenerate simple model semiconductor at low temperatures for an arbitrary electric field strength. Following Paranjape the modified distribution of phonons has been taken into account. The difference between the calculations of transport coefficients made by taking into account the modified phonon distribution and by not taking it into account is quite appreciable at high electric field. Calculations also show that for Ne = 1016/cm3 the mobility of electrons remains temperature dependent.


1992 ◽  
Vol 260 ◽  
Author(s):  
Zs. J. Horváth

ABSTRACTSchottky diodes often exhibit anomalous current-vol tage characteristics at low temperatures (T) with T dependent ideality factors (IF) and apparent barrier heights (BH) evaluated for the thermionic emission. In this paper theoretical expressions are first presented for the T dependences of the IF and the apparent BH for the thermionic-field emission (TFE) including the bias dependence of BH. Model calculations are reported, which has been performed using these expressions, and their results are compared with the available experimental data. It is shown that the T dependence of the 1 Fs and apparent BHs often may be explained self consistently by the TFE with anomalously high characteristic energies Eoo.


2004 ◽  
Vol 450 (1) ◽  
pp. 163-166 ◽  
Author(s):  
S. Shokhovets ◽  
D. Fuhrmann ◽  
R. Goldhahn ◽  
G. Gobsch ◽  
O. Ambacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document