Physical-Chemical Evolution upon Thermal Treatments of Al2O3, HfO2 and Al/Hf Composite Materials Deposited by ALCVD™

2002 ◽  
Vol 745 ◽  
Author(s):  
B. Crivelli ◽  
M. Alessandri ◽  
S. Alberici ◽  
F. Cazzaniga ◽  
D. Dekadjevi ◽  
...  

ABSTRACTThis paper presents a systematic investigation of thermal stability of high-k materials deposited on RCA cleaned wafers by ALCVD™ in an ASM Pulsar™ 2000 reactor. Physical-chemical evolution of Al2O3, HfO2 and Al/Hf composite materials (nanolaminate and aluminates) was studied considering two types of thermal treatments: quenched vacuum anneals from 300°C to 900°C and furnace atmospheric processes in N2 or O2 at 850°C and 900°C. Material crystallization and changes in film structure were studied by means of TEM, XRD, XRR, XRF, RBS and TOF-SIMS. Non-contact electrical measurements were used to detect modification in EOT and fixed charge. Al2O3 was found still amorphous at 900°C. Not so for HfO2 that crystallized in monoclinic phase at a temperature between 300–400°C. Crystallization temperature and possible phase separation of Al/Hf composite materials were found to be a function of Al2O3 content and film type. In most of these samples, however, a chemical evolution was detected in addition to the above reported crystallization phenomena. All the achieved results demonstrate that depending on thermal treatment conditions, ALCVD™ high-k stability does not only concern phase transition effects but also a transformation of the “SiO2/high-k” system into “doped-SiO2/silicate” stack.

2003 ◽  
Vol 765 ◽  
Author(s):  
B. Crivelli ◽  
M. Alessandri ◽  
S. Alberici ◽  
D. Brazzelli ◽  
A. C. Elbaz ◽  
...  

AbstractThis study presents an investigation on physical-chemical stability of (HfO2)x(Al2O3 )1-x alloys upon prolonged post-deposition annealings. Two different Hf-aluminates were deposited by ALCVDTM, containing 34% and 74% Al2O3 mol% respectively. Post-deposition annealings (PDA) were carried out in O2 or N2 atmosphere, at 850°C and 900°C for 30 minutes. Interfacial layer (IL) increase after PDA was detected on all the samples, but with small differences between N2 and O2 treatments. Stack composition was characterized by means of XRR, XRF, RBS and TOF-SIMS. Growth of interface layer was justified by limited oxygen incorporation from external ambient. Silicon diffusion from the substrate into high-k material and aluminum/hafnium redistribution were observed and associated to annealing temperature. XRD and planar TEM analysis evidenced first grain formation and then, in the case of Hf-rich samples, almost complete crystallization. Overall, Hf-aluminates were found to remain XRD amorphous during high temperature prolonged treatments up to 900°C for 74% and 850°C for 34% alloys respectively. Differently from HfO2, (HfO2)0.66(Al2O3 )0.34 alloy was observed to crystallized in orthorhombic phase. Hf-aluminates were also electrically characterized by means of C(V) and I(V) measurements on basic capacitors. Variations in material electrical properties were found consistent with change in physical-chemical film structure. Increase in k value up to 30 was observed on Hf-rich samples crystallized in orthorhombic phase.


2010 ◽  
Vol 50 (9-11) ◽  
pp. 1312-1315 ◽  
Author(s):  
M. Lanza ◽  
M. Porti ◽  
M. Nafría ◽  
X. Aymerich ◽  
E. Whittaker ◽  
...  

2009 ◽  
Vol 1184 ◽  
Author(s):  
Thierry Conard ◽  
Kai Arstila ◽  
Thomas Hantschel ◽  
Alexis Franquet ◽  
Wilfried Vandervorst ◽  
...  

AbstractIn order to continuously improve the performances of microelectronics devices through scaling, SiO2 is being replaced by high-k materials as gate dielectric; metal gates are replacing poly-Si. This leads to increasingly more complex stacks. For future generations, the replacement of Si as a substrate by Ge and/or III/V material is also considered. This also increases the demand on the metrology tools as a thorough characterization, including composition and thickness is thus needed. Many different techniques exist for composition analysis. They usually require however large area for the analysis, complex instrumentation and can be time consuming. EDS (Energy Dispersive Spectroscopy) when coupled to Scanning Electron Microscopy (SEM) has the potential to allow fast analysis on small scale areas.In this work, we evaluate the possibilities of EDS for thin film analysis based on an intercomparison of composition analysis with different techniques. We show that using proper modeling, high quality quantitative composition and thickness of multilayers can be achieved.


2004 ◽  
Vol 59 (8) ◽  
pp. 1183-1187 ◽  
Author(s):  
Caterina Carpanese ◽  
Barbara Crivelli ◽  
Massimo Caniatti

2022 ◽  
pp. 131654
Author(s):  
Shuimiao Xia ◽  
Zhicheng Shi ◽  
Liang Sun ◽  
Shengbiao Sun ◽  
Davoud Dastan ◽  
...  

2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000515-000534
Author(s):  
Aubrey Beal ◽  
C. Stevens ◽  
T. Baginski ◽  
M. Hamilton ◽  
R. Dean

Due to increasing speed, density and number of signal paths in integrated circuits, motivations for high density capacitors capable of quickly sourcing large amounts of current have led to many design and fabrication investigations. This work outlines continued efforts to achieve devices which meet these stringent requirements and are compatible with standard silicon fabrication processes as well as silicon interposer technologies. Previous work has been further developed resulting in devices exhibiting greater capacitance values by employing geometries which maximize surface area. The Atomic Layer Deposition (ALD) of thin layered high K materials, such as Hafnium Oxide, as opposed to previous silicon-dioxide based devices effectively increased the capacitance per unit area of the structures. This paper outlines the design, fabrication, and testing of high density micro-machined embedded capacitors capable of quickly sourcing (i.e. risetimes greater than 100A/nsec) high currents (i.e. greater than 100A). These devices were successfully simulated then tested using a standard ringdown procedure. Generally, the resulting device characterization found during testing stages strongly correlates to the expected simulated device behavior. Subsequent descriptions and design challenges encountered during fabrication, testing and integration of these passive devices are outlined, as well as potential device integration and implementation strategies for use in silicon interposers. The modification and revision of several device generations is documented and presented. Increased device capacitive density, maximized current capabilities and minimized effects of series inductance and resistance are presented. These resulting thin, capacitive structures exhibit compatibility with Si interposer technology.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001380-001406
Author(s):  
Aubrey N. Beal ◽  
John Tatarchuk ◽  
Colin Stevens ◽  
Thomas Baginski ◽  
Michael Hamilton ◽  
...  

The need for integrated passive components which meet the stringent power system requirements imposed by increased data rates, signal path density and challenging power distribution network topologies in integrated systems yield diverse motivations for high density, miniaturized capacitors capable of quickly sourcing large quantities of current. These diverse motivations have led to the realization of high density capacitor structures through the means of several technologies. These structures have been evaluated as high-speed, energy storage devices and their respective fabrication technologies have been closely compared for matching integrated circuit speed and density increase, chip current requirements, low resistance, low leakage current, high capacitance and compatibility with relatively high frequencies of operation (~1GHz). These technologies include devices that utilize pn junctions, Schottky barriers, optimized surface area techniques and the utilization of high dielectric constant (high-K) materials, such as hafnium oxide, as a dielectric layer through the means of atomic layer deposition (ALD). The resulting devices were micro-machined, large surface area, thin, high-density capacitor technologies optimized as embedded passive devices for thin silicon interposers. This work outlines the design, fabrication, simulation and testing of each device revision using standard silicon microfabrication processes and silicon interposer technologies. Consequently, capacitive storage devices were micro-machined with geometries which maximize surface area and exhibit the capability of sourcing 100A of current with a response time greater than 100 A/nsec through the use of thin layered, ALD high-K materials. The simulation and testing of these devices show general agreement when subjected to a standard ring-down procedure. This paper provides descriptions and design challenges encountered during fabrication, testing and integration of these passive devices. In addition, potential device integration and implementation strategies for use in silicon interposers are also provided. The modification and revision of several device generations is documented showing increased device capacitance density, maximized current capabilities and minimized effects of series inductance and resistance. The resulting structures are thin, capacitive devices that may be micro-machined using industry standard Si MEMS processes and are compatible with Si interposer 3D technologies. The subsequent design processes allow integrated passive components to be attached beneath chips in order to maximize system area and minimize the chip real estate required for capacitive energy storage devices.


1996 ◽  
Vol 80 (5) ◽  
pp. 2883-2890 ◽  
Author(s):  
M. D. Joswick ◽  
I. H. Campbell ◽  
N. N. Barashkov ◽  
J. P. Ferraris

2007 ◽  
Vol 996 ◽  
Author(s):  
Rajat Mahapatra ◽  
Amit K. Chakraborty ◽  
Peter Tappin ◽  
Bing Miao ◽  
Alton B. Horsfall ◽  
...  

AbstractHfO2 films were grown on SiO2/4H-SiC and SiON/4H-SiC layers by evaporation of metallic Hf in an electron beam deposition system followed by thermal oxidation. X-ray photoelectron spectroscopy confirmed the formation of HfO2 films. There is no evidence of formation of hafnium silicide or carbon pile up at the surface as well as at the interfacial layer. Electrical measurements show the presence of fewer slow traps in the HfO2/SiON gate dielectric stack on 4H-SiC and comparable values of interface state density. The HfO2/SiON stack layer improves leakage current characteristics with a higher breakdown field and has better reliability under electrical stress.


Sign in / Sign up

Export Citation Format

Share Document