Exploration of Cation Substitution in the Layered Compound CrWN2

2002 ◽  
Vol 755 ◽  
Author(s):  
K. Scott Weil ◽  
Prashant N. Kumta ◽  
Jekabs Grins

ABSTRACTA series of derivative compounds based on the layered parent phase CrWN2 have been synthesized using a complexed precursor synthesis route. X-ray diffraction analyses demonstrate that both the chromium and tungsten display mutual substitution for one another and can also undergo considerable extensive replacement by a wide variety of cation species without significantly altering the original layered structure of the parent dinitride compound. The precursor approach employed here appears to offer a ready technique for exploring compositional phase space in layered nitrides of this type.

1997 ◽  
Vol 495 ◽  
Author(s):  
K. S. Weil ◽  
P. N. Kumta

ABSTRACTThe structures of four new tungsten based, ternary nitride compounds, Fe3W3N, Ni6W6N, Ni2W4N, and Fe4W2N, each prepared using a complexed precursor synthesis route, have been determined by Rietveld analyses of the respective powder x-ray diffraction (PXRD) data. Each compound crystallizes in a relatively complex cubic structure which is in general isostructural with the η-carbide structure. However, subtle structural differences which are compositionally dependent do exist between each nitride and these will be examined in detail in this paper.


2018 ◽  
Vol 233 (6) ◽  
pp. 361-370 ◽  
Author(s):  
Anna-Lena Hansen ◽  
Bastian Dietl ◽  
Martin Etter ◽  
Reinhard K. Kremer ◽  
David C. Johnson ◽  
...  

Abstract Results of combined synchrotron X-ray diffraction and pair distribution function experiments performed on the layered compound CrTe3 provide evidence for a short range structural distortion of one of the two crystallographically independent CrTe6 octahedra. The distortion is caused by higher mobility of one crystallographically distinct Te ion, leading to an unusual large Debye Waller factor. In situ high temperature X-ray diffraction investigations show an initial crystallization of a minor amount of elemental Te followed by decomposition of CrTe3 into Cr5Te8 and Te. Additional experiments provide evidence that the Te impurity (<1%) cannot be avoided. Analyses of structural changes in the temperature range 100–754 K show a pronounced anisotropic expansion of the lattice parameters. The differing behavior of the crystal axes is explained on the basis of structural distortions of the Cr4Te16 structural building units. An abrupt distortion of the structure occurs at T≈250 K, which then remains nearly constant down to 100 K. The structural distortion affects the spin exchange interactions between Cr3+ cations. A significant splitting between field-cooled (fc) and zero-field-cooled (zfc) magnetic susceptibility is observed below about 200 K. Applying a small external magnetic field results in a substantial spontaneous magnetization, reminiscent of ferro- or ferrimagnet exchange interactions below ~240 K. A Debye temperature of ~150 K was extracted from heat capacity measurements.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Cristian-R. Boruntea ◽  
Peter N. R. Vennestrøm ◽  
Lars F. Lundegaard

During screening of the phase space using KOH and 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane hydroxide (1-methyl-DABCO) under hydrothermal zeolite synthesis conditions, K-paracelsian was synthesized. Scanning electron microscopy, energy dispersive X-ray spectroscopy and ex situ powder X-ray diffraction analysis revealed a material that is compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage. In the case of K-paracelsian it might be useful to consider it a link between feldspars and zeolites. It was also shown that K-paracelsian can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite topologies can be constructed. Furthermore, it facilitates the construction of a range of hypothetical small-pore structures that are crystallo-chemically healthy, but which have not yet been realized experimentally.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Zоrаn Pеtrоvić ◽  
Pеrо Dugić ◽  
Vојislаv Аlеksić ◽  
Sаbinа Bеgić ◽  
Vlаdаn Мićić ◽  
...  

Bentonites are aluminosilicate minerals which, due to their porosity, layered structure and composition have a wide application. Structural and textural characteristics of bentonite may be improved by different modification procedures. The aim of this study was to investigate compositional, structural and textural characteristics of domestic bentonite in place Gerzovo, before and after the activation with sulfuric acid. These characteristics were investigated by analytical methods, X-ray diffraction (XRD) and the method of low-temperature nitrogen adsorption (BET). Characteristics of acid-activated bentonite were compared with the characteristics of commercial active clay. The obtained results showed that the activation of bentonite with sulfuric acid leads to a significant improvement in structural and textural characteristics. Using these results it can be assumed that this bentonite will have good adsorption characteristics and can serve as an alternative in comparison with imported commercial aluminosilicate-based adsorbents.


1991 ◽  
Vol 230 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

AbstractThe crystallization of amorphous Si in a Al/Si multilayer (with a modulation length of about 120Å) was investigated using transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. Amorphous Si was found to crystallize at about 175 °C with the heat of reaction of 11±2(kJ/mol). Al grains grow prior to the nucleation of crystalline Si. The crystalline Si was found to nucleate within the grown Al layers. The incipient crystalline Si initially grows within the Al layer and then spreads through the amorphous Si and other Al layers. Because of extensive intermixing, the original layered structure is destroyed. The Al(111) texture is also enhanced.


2016 ◽  
Vol 70 (3) ◽  
Author(s):  
Ming-Feng Song ◽  
Zhong-Fang Li ◽  
Guo-Hong Liu ◽  
Su-Wen Wang ◽  
Xiao-Yan Yin ◽  
...  

AbstractLanthanum sulfophenyl phosphate (LaSPP) was synthesized by m-sulfophenyl phosphonic acid and lanthanum nitrate. UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy indicate that the desired product was obtained and its elementary composition and typical layered structure were determined by energy dispersive X-ray spectroscopy and scanning electron microscopy. Transmission electron microscopy (TEM) proved its typical layered structure and X-ray diffraction spectroscopy indicated its good crystallinity and the interlayer distance of about 15.67 Å , which matches the value obtained by TEM (2.0 nm). Thermogravimetry and differential thermal analysis revealed good thermal stability of LaSPP. Proton conductivity of LaSPP was measured at different temperatures and relative humidities (RH), reaching values of 0.123 S cm


2011 ◽  
Vol 170 ◽  
pp. 29-32
Author(s):  
Shintaro Ogawa ◽  
Koji Okuta ◽  
Hirohiko Sato

We have discovered a novel compound Na0.12CrO2Ge0.18Ox•yH2O using a hydrothermal method. Its powder X-ray diffraction reveals a monoclinic unit cell with lattice parameters: a = 7.260 Å, b = 2.950 Å, c = 5.117 Å and β = 103.7°. A Rietveld analysis shows that this compound has a layered structure based on CrO2 sheets consisting of edge-shared CrO6 octahedra. Such a layered structure is commonly seen in many hexagonal Cr oxides such as NaCrO2. A heat treatment at 100 °C modifies the crystal structure without destruction of a layered structure based on Cr triangular-lattice, because H2O molecules among the CrO2 sheets are removed at high temperature. Magnetization measurements reveal a spin-glass behavior below Tg = 3 K.


2006 ◽  
Vol 78 (4) ◽  
pp. 855-871 ◽  
Author(s):  
Kathleen V. Kilway ◽  
Shiping Deng ◽  
Sean Bowser ◽  
Joseph Mudd ◽  
Laronda Washington ◽  
...  

Dicyano- and tricyano-substituted aromatic angular building blocks were systematically complexed with silver triflate, and their structures were determined by means of single-crystal X-ray diffraction. The molecular assembly of 1,3,5-tris(cyanomethyl)-2,4,6-triethylbenzene with silver triflate from benzene resulted in a layered structure with distorted square pyramidal silver sites. The structure resulting from the complexation of 1,3,5-tris(cyanomethyl)-2,4,6-trimethylbenzene with silver triflate is dependent on the solvent of crystallization. From benzene or toluene, reaction of 1,3,5-tris(cyanomethyl)-2,4,6-trimethylbenzene with silver triflate yielded a porous, channel-containing, solvated structure, but from acetone the resulting material was a network solid containing no solvent. Complexation of 1,4-bis(cyanomethyl)-2,3,5,6-tetraethylbenzene and 1,4-bis(cyanomethyl)-2,3,5,6-tetramethylbenzene with silver triflate resulted in network solids where the triflate anions were strongly coordinated to the silver.


MRS Bulletin ◽  
2002 ◽  
Vol 27 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Daisuke Shindo ◽  
Yasukazu Murakami ◽  
Takuya Ohba

AbstractPrecursor phenomena are critical issues for martensitic transformations. In this article, we show recent progress in understanding precursor phenomena to the R-phase transformation, which is important for both fundamentals and applications. Structural modulation in the parent phase was intensively studied by means of detailed analyses of the weak diffuse scattering of electrons with the aid of recently developed energy-filtered transmission electron microscopy coupled with x-ray diffraction. A peculiar domain-like structure, which originates from static transverse atomic displacements in the parent phase, was discovered by virtue of these advanced methods. The characteristics of this structure (e.g., size, shape, and temperature-dependence), as well as its role in the subsequent R-phase transformation, are discussed.


2013 ◽  
Vol 738-739 ◽  
pp. 501-505 ◽  
Author(s):  
Danuta Stróż ◽  
Jakub Palka ◽  
Zdzisław Lekston ◽  
Grzegorz Dercz

The results presented here concern two NiTi alloys (near-equiatomic NiTi and Ni-rich alloy) subjected to plastic deformation by compression combined with reversion oscillating torsion. The maximal strain obtained was εc = 6.20. Finally the alloys were annealed at the temperature range 300 – 500°C for 1 hour. The structure of the as-prepared alloys was studied with the use of temperature X-ray diffraction and TEM observations. Also the DSC and bend and free recovery ASTM tests were carried out. It was found that the structure consists of a mixture of highly deformed B2 parent phase and B19’ martensite. The TEM studies revealed some amorphous areas in the most strained region of the samples. Annealing at lower temperatures caused formation of nanocrystalline structure that grew to the microcrystalline and finally well-defined polygonized structure in annealed at 500°C specimens. Multi-stage transformation was observed in the annealed at lower temperatures samples.


Sign in / Sign up

Export Citation Format

Share Document