Thermal and Residual Stress Modelling of the Selective Laser Sintering Process

2002 ◽  
Vol 758 ◽  
Author(s):  
Ameer K. Ibraheem ◽  
Brian Derby ◽  
Phillip J. Withers

ABSTRACTThe production of functional tool steel components by selective laser sintering requires an understanding of the effects of the laser processing parameters on the microstructure evolution during the fabrication process. This would allow the production of tools that have predictable and reproducible microstructure, good mechanical properties and low residual stresses. In this paper, finite element modelling has been carried out to investigate the temperature distribution and residual stresses during laser sintering of hot-work tool steel powders. The effects of the laser power and scanning rate on the selective laser sintering process have been investigated. Thermal residual stresses accumulated during the process have been predicted and compared with strain measurements made using neutron diffraction.

2014 ◽  
Vol 915-916 ◽  
pp. 1000-1004 ◽  
Author(s):  
Xiao Hui Song ◽  
Yu Sheng Shi ◽  
Ping Hui Song ◽  
Qing Song Wei ◽  
Wei Li

Selective Laser Sintering (SLS) has been successfully and broadly applied in biomedical engineering to fabricated biomedical part. And the porosity and microstructure of part can be controlled by main sintered parameters. This research focused aliphatic Polycarbonate (PC) sintered with SLS. According to the orthogonal experiment, the effect of laser power energy and interaction between main sintered parameters on porosity has been studied. Then the micro structure and mechanical properties of specimens sintered with the best optimal parameters have been analyzed.


2015 ◽  
Vol 775 ◽  
pp. 209-213
Author(s):  
Nai Fei Ren ◽  
Ya Hui Hang ◽  
Yan Zhao ◽  
Qi Yu Yang

During selective laser sintering process, different sintering parameters have great impact on the performance of the molded parts, and the degree of influence is different. Using orthogonal test, indirect sintered 316L stainless steel, the compressive strength and precision of the parts were measured and compared to study the influence of various sintering parameters (laser power, scanning speed, scan spacing, preheating temperature) on sintering. The greater degree of influence factors were got by range analysis. The results show that laser power, scanning speed and scan spacing have greater degree of influence on the compressive strength of the parts, and the preheating temperature have less impact. By comparison, the optimum set of parameters was concluded: the laser power is 15W, the scanning speed is 1900mm/s, the scan spacing is 0.125mm, and the preheating temperature is 60°C.


2011 ◽  
Vol 55-57 ◽  
pp. 853-858
Author(s):  
Rong Cheng ◽  
Xiao Yu Wu ◽  
Jian Ping Zheng

This paper presents experimental investigations on influence of important process parameters viz., laser power, scan speed, layer thickness, hatching space along with their interactions on dimensional accuracy of Selective Laser Sintering (SLS) processed pro-coated sand mold. It is observed that dimensional error is dominant along length and width direction of built mold. Optimum parameters setting to minimize percentage change in length and width of standard test specimen have been found out using Taguchi’s parameter design. Optimum process conditions are obtained by analysis of variance (ANOVA) is used to understand the significance of process variables affecting dimension accuracy. Scan speed and hatching space are found to be most significant process variables influencing the dimension accuracy in length and width. And laser power and layer thickness are less influence on the dimension accuracy. The optimum processing parameters are attained in this paper: laser power 11 W; scan speed 1200 mm/s; layer thickness 0.5 mm and hatching space 0.25 mm. It has been shown that, on average, the dimensional accuracy under this processing parameters combination could be improved by approximately up to 25% compared to other processing parameters combinations.


Author(s):  
Hideki Kyogoku ◽  
Takeshi Uemori ◽  
Akihiko Ikuta ◽  
Kenichi Yoshikawa ◽  
Hitoshi Ohmori

In this study, the fabrication conditions of WC cemented carbides by direct selective laser melting were investigated. The effects of additives, such as Co, Cu-20%Sn and Cu powders, and laser scanning conditions on laser sintering process were examined to fabricate a sound laser-scanned body of WC cemented carbides. The optimum laser power, scan speed and scan pitch were found out by experiments. It was found that the continuously smooth single-scan track can be obtained at a lower laser power and a higher scan speed by the addition of 30% Cu powder. The smooth surface of the laser-scanned body could be fabricated at a laser power of 9 W, a scan speed of 20 mm/s and a scan pitch of 0.05 mm.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5710-5724
Author(s):  
Aboubaker I. B. Idriss ◽  
Jian Li ◽  
Yangwei Wang ◽  
Yanling Guo ◽  
Elkhawad A. Elfaki

A new type of sustainable material, i.e., a sisal fiber/poly-ether sulfone composite (SFPC), which is energy-efficient, environmentally friendly, and has a low cost, was developed for laser sintering additive manufacturing. This study was performed to explore the effects of the processing parameters on the SFPC composite parts produced via selective laser sintering (SLS). The effects of the laser sintering processing parameters, i.e., the preheating temperature, laser power, and scan speed, were studied. Bending and tensile testing of the SFPC specimens was successfully performed via SLS. The effect of the processing parameters on the SLS in terms of the mechanical strength of the laser-sintered parts was investigated. The results determined that the processing parameters had a significant effect on the mechanical strength of the sintered SFPC parts. When the preheating temperature and laser power were increased in the processing SLS system, the mechanical strength of the sintered SFPC parts was significantly increased. However, the scanning speed had an inverse proportional relationship to the mechanical strength of the SFPC SLS parts.


2020 ◽  
Vol 184 ◽  
pp. 01047 ◽  
Author(s):  
Pankaj Kumar ◽  
Gazanfar Mustafa Ali syed

Additive manufacturing (also known as 3D printing) process is an emerging technique for the fabrication of biomedical components. Selective laser sintering or melting is one of the widely used additive printing technology for manufacturing of metallic and non-metallic components used in the industry. This review paper presents, a summary of the published research papers on the fabrication of biomedical components using selective laser sintering technique. Therefore, author meticulously attempted to investigate individual biocompatible material-wise review which includes Ti6Al4V, Ti-7.5 Mo alloy, β-Ti35Zr28Nb, PEEK, PA2200, and Polyamide/Hydroxyapatite. In addition, this article also explores the effects of the various laser sintering process parameters such as laser power, scanning speed, density of the material on the mechanical properties, tribological properties, porosity and surface roughness of the fabricated alloy. Moreover, the author also investigated challenges and future prospective of the laser processing of biomedical implants.


Author(s):  
Edward C. Kinzel ◽  
Xianfan Xu ◽  
Hjalti H. Sigmarsson ◽  
William J. Chappell

This paper investigates fabrication of functional thick-film components using Selective Laser Sintering (SLS). We demonstrated that SLS has exciting potentials for thick-film metallization of low-temperature substrates. The DC conductivity of laser sintered components is measured for a range of laser scan speeds and powers. The quality of metallization at microwave frequencies is evaluated by comparing the measured Q to simulations. The effects of processing parameters on the quality of components are investigated through a heat transfer analysis of the laser sintering process. Optimum properties of the fabricated components are obtained when proper thermal conditions are achieved during laser heating.


2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


2018 ◽  
Vol 8 (12) ◽  
pp. 2383 ◽  
Author(s):  
Zhehan Chen ◽  
Xianhui Zong ◽  
Jing Shi ◽  
Xiaohua Zhang

Selective laser sintering (SLS) is an additive manufacturing technology that can work with a variety of metal materials, and has been widely employed in many applications. The establishment of a data correlation model through the analysis of temperature field images is a recognized research method to realize the monitoring and quality control of the SLS process. In this paper, the key features of the temperature field in the process are extracted from three levels, and the mathematical model and data structure of the key features are constructed. Feature extraction, dimensional reduction, and parameter optimization are realized based on principal component analysis (PCA) and support vector machine (SVM), and the prediction model is built and optimized. Finally, the feasibility of the proposed algorithms and model is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document