Photo-Induced Corrosion in Microelectronic Devices Containing Dissimilar Metals.

2003 ◽  
Vol 781 ◽  
Author(s):  
C. Belisle ◽  
L. Westergard ◽  
D. Florence ◽  
T. Haskett ◽  
G. Scott ◽  
...  

AbstractVarious metals with different galvanic potentials are used to fabricate the microelectronic circuits. One of the most commonly used processes during integrated circuit manufacturing is the tungsten via fill. To obtain maximum interconnect density with low via resistance requires that metal-via overlap is essentially zero. Zero overlap with litho variations and thus misalignment may result in unlanded vias. Since the vias are used to connect various metal levels, a large number of these cases may occur causing device failures and thus yield loss. To study this problem a variety of test structures were studied and a new mechanism of corrosion was found. The tungsten corrosion observed in these structures was found to be photo-induced. In this paper we will discuss the mechanism of photoinduced galvanic corrosion that occurs between the aluminum and tungsten metal layers during microelectronic manufacturing.

Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


Author(s):  
Romain Desplats ◽  
Timothee Dargnies ◽  
Jean-Christophe Courrege ◽  
Philippe Perdu ◽  
Jean-Louis Noullet

Abstract Focused Ion Beam (FIB) tools are widely used for Integrated Circuit (IC) debug and repair. With the increasing density of recent semiconductor devices, FIB operations are increasingly challenged, requiring access through 4 or more metal layers to reach a metal line of interest. In some cases, accessibility from the front side, through these metal layers, is so limited that backside FIB operations appear to be the most appropriate approach. The questions to be resolved before starting frontside or backside FIB operations on a device are: 1. Is it do-able, are the metal lines accessible? 2. What is the optimal positioning (e.g. accessing a metal 2 line is much faster and easier than digging down to a metal 6 line)? (for the backside) 3. What risk, time and cost are involved in FIB operations? In this paper, we will present a new approach, which allows the FIB user or designer to calculate the optimal FIB operation for debug and IC repair. It automatically selects the fastest and easiest milling and deposition FIB operations.


Author(s):  
Wing Chiu Tam ◽  
Osei Poku ◽  
R. D. (Shawn) Blanton

Abstract Systematic defects due to design-process interactions are a dominant component of integrated circuit (IC) yield loss in nano-scaled technologies. Test structures do not adequately represent the product in terms of feature diversity and feature volume, and therefore are unable to identify all the systematic defects that affect the product. This paper describes a method that uses diagnosis to identify layout features that do not yield as expected. Specifically, clustering techniques are applied to layout snippets of diagnosis-implicated regions from (ideally) a statistically-significant number of IC failures for identifying feature commonalties. Experiments involving an industrial chip demonstrate the identification of possible systematic yield loss due to lithographic hotspots.


Author(s):  
H.H. Yap ◽  
P.K. Tan ◽  
G.R. Low ◽  
M.K. Dawood ◽  
H. Feng ◽  
...  

Abstract With technology scaling of semiconductor devices and further growth of the integrated circuit (IC) design and function complexity, it is necessary to increase the number of transistors in IC’s chip, layer stacks, and process steps. The last few metal layers of Back End Of Line (BEOL) are usually very thick metal lines (>4μm thickness) and protected with hard Silicon Dioxide (SiO2) material that is formed from (TetraEthyl OrthoSilicate) TEOS as Inter-Metal Dielectric (IMD). In order to perform physical failure analysis (PFA) on the logic or memory, the top thick metal layers must be removed. It is time-consuming to deprocess those thick metal and IMD layers using conventional PFA workflows. In this paper, the Fast Laser Deprocessing Technique (FLDT) is proposed to remove the BEOL thick and stubborn metal layers for memory PFA. The proposed FLDT is a cost-effective and quick way to deprocess a sample for defect identification in PFA.


Author(s):  
K. N. Hooghan ◽  
K. S. Wills ◽  
P.A. Rodriguez ◽  
S.J. O’Connell

Abstract Device repair using Focused Ion Beam(FIB) systems has been in use for most of the last decade. Most of this has been done by people who have been essentially self-taught. The result has been a long learning curve to become proficient in device repair. Since a great deal of the problem is that documentation on this “art form” is found in papers from many different disciplines, this work attempts to summarize all of the available information under one title. The primary focus of FIB device repair is to ensure and maintain device integrity and subsequently retain market share while optimizing the use of the instrument, usually referred to as ‘beam time’. We describe and discuss several methods of optimizing beam time. First, beam time should be minimized while doing on chip navigation to reach the target areas. Several different approaches are discussed: dead reckoning, 3-point alignment, CAD-based navigation, and optical overlay. Second, after the repair areas are located and identified, the desired metal levels must be reached using a combination of beam currents and gas chemistries, and then filled up and strapped to make final connections. Third, cuts and cleanups must be performed as required for the final repair. We will discuss typical values of the beam currents required to maintain device integrity while concurrently optimizing repair time. Maintaining device integrity is difficult because of two potentially serious interactions of the FIB on the substrate: 1) since the beam consists of heavy metal ions (typically Gallium) the act of imaging the surface produces some physical damage; 2) the beam is positively charged and puts some charge into the substrate, making it necessary to use great care working in and around capacitors or active areas such as transistors, in order to avoid changing the threshold voltage of the devices. Strategies for minimizing potential damage and maximizing quality and throughput will be discussed.


Sign in / Sign up

Export Citation Format

Share Document