Synthesis and High Temperature Thermoelectric Properties of Alkaline-Earth Metal Hexaborides MB6 (M=Ca, Sr, Ba)

2003 ◽  
Vol 793 ◽  
Author(s):  
Masatoshi Takeda ◽  
Yosuke Kurita ◽  
Keisuke Yokoyama ◽  
Takahiro Miura ◽  
Tsuneo Suzuki ◽  
...  

ABSTRACTPolycrystalline alkaline-earth hexaborides (MB6: M =Ca, Sr, Ba) were synthesized and their thermoelectric and transport properties were examined to discuss their possibility as high temperature thermoelectric materials. Hall measurements showed that carrier concentration of the BaB6 was the highest among the three hexaborides and that of CaB6 was the lowest. Substitution of part of the alkaline earth metals with one of the others changed the carrier concentration of the hexaboride. As the carrier concentration increased, Seebeck coefficient increased and electrical conductivity decreased. These results suggest that the thermoelectric properties of the divalent hexaborides depend largely on the carrier concentration, and optimum carrier concentration which gives maximum power factor was estimated to be approximately 2x1026 m−3. Consequently, such a substitution enables us to control Seebeck coefficient and electrical conductivity of the hexaborides, and will also be effective to reduce the lattice heat conduction due to the alloying effect. A thermoelectric device was fabricated using SrB6 and boron carbide thin films as n-type and p-type elements, respectively. To the best of our knowledge, this is the first demonstration of a thermoelectric device composed of only boron-rich solids.

2008 ◽  
Vol 368-372 ◽  
pp. 547-549
Author(s):  
Jun Jiang ◽  
Ya Li Li ◽  
Gao Jie Xu ◽  
Ping Cui ◽  
Li Dong Chen

In the present study, n-type (Bi2Se3)x(Bi2Te3)1-x crystals with various chemical compositions were fabricated by the zone melting method. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ), were measured in the temperature range of 300-500 K. The influence of the variations of Bi2Te3 and Bi2Se3 content on thermoelectric properties was studied. The increase of Bi2Se3 content (x) caused an increase in carrier concentration and thus an increase of σ and a decrease of α. The maximum figure of merit (ZT = α2σT/κ) of 0.87 was obtained at about 325 K for the composition of 93%Bi2Te3-7%Bi2Se3 with doping TeI4.


2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


2020 ◽  
Vol 34 (18) ◽  
pp. 2050206
Author(s):  
Ying Zhou ◽  
Zhenhua Ge ◽  
Jun Guo ◽  
Jing Feng

[Formula: see text] is a [Formula: see text] compound (where Pn = Bi and Sb, Ch = Te, Se, and S), which has attracted increasing attention as a candidate for use in thermoelectric applications. Previous studies demonstrated the advantage of [Formula: see text] thermoelectric materials, despite an inferior thermoelectric performance. Herein, a series of [Formula: see text] ([Formula: see text], 0.10, 0.15, 0.20, and 0.25) thermoelectric materials were prepared by powder compaction sintering. The effects of phase structures and microstructure of the [Formula: see text] bulk material were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were measured systematically. The results show that carrier concentration increased with decreasing Se content, which in turn affected the electrical transport properties. Low Se contents gave larger power factor (PF) values than the pristine [Formula: see text] sample, the maximum PF value being [Formula: see text] at 320 K for [Formula: see text]. The variation in PF was attributed to the variations in electrical conductivity [Formula: see text] and Seebeck coefficient [Formula: see text] upon optimizing Se content. The [Formula: see text] samples showed an enhanced thermoelectric figure of merit (ZT) with increasing measurement temperature, due to the increased [Formula: see text] value, [Formula: see text], and decreased [Formula: see text]. The [Formula: see text] sample exhibited the highest ZT (0.28) at 575 K, while [Formula: see text] exhibited the lowest ZT (0.14) at 325 K. This indicated that tuning Se content was an effective way to enhance carrier concentration.


Author(s):  
А.И. Таранова ◽  
А.П. Новицкий ◽  
А.И. Воронин ◽  
С.В. Таскаев ◽  
В.В. Ховайло

In this work the results of an experimental study of Fe2Ti1-xVxSn alloys (x = 0; 0.06; 0.15; 0.2) are presented. According to the temperature dependencies of the electrical conductivity, Seebeck coefficient and thermal conductivity, it is established, that the studied compositions exhibit transport properties typical for semiconductors. The substitution of V at the Ti site leads to a change of the p-type electrical conductivity behavior to n-type; the pristine sample of Fe2TiSn has the best thermoelectric properties.


2019 ◽  
Vol 13 (02) ◽  
pp. 2051001
Author(s):  
Wei-Ying Yang ◽  
Ke-Xian Wang ◽  
Zheng Cao ◽  
Hao-Yang Yu ◽  
Xiao-Bo Ma ◽  
...  

Strontium titanate ([Formula: see text] has the advantages of being non-toxic, environmentally friendly and high-temperature stable, and has potential application in waste heat power generation at medium and high temperature. To explore the impact of TiO2 on the thermoelectric properties of SrTiO3, we synthesized TiO2/La10Nbb10-STO composite powders by hydrothermal method using precursor solution of 10[Formula: see text]mol.% La and 10[Formula: see text]mol.% Nb co-doped STO (La10Nb10-STO) containing TiO2 nanopowders with different molar ratio. After cold pressing and sintering, composite bulk materials were obtained, and their microstructure and thermoelectric transport properties were analyzed. With the increasing TiO2, although the thermal conductivity of TiO2/La10Nb10-STO composite decreased and the Seebeck coefficient increased, the minimum thermal conductivity and the maximum Seebeck coefficient were 2.54[Formula: see text][Formula: see text][Formula: see text] and 215[Formula: see text][Formula: see text]V[Formula: see text][Formula: see text], respectively, at 1000[Formula: see text]K, but the power factor decreased at high temperature due to the apparent decrease of electrical conductivity, resulting in the ZT values being lower than that of La0Nb10-STO without TiO2 addition at high temperature. Significantly, the addition of TiO2 can improve the thermoelectric performance of strontium titanate at low temperature. This approach is expected to improve the ZT of SrTiO3-based thermoelectric material through additional controlling of electrical conductivity.


2009 ◽  
Vol 79-82 ◽  
pp. 2143-2146 ◽  
Author(s):  
Guo Jing Li ◽  
Shu Jin Zhao ◽  
Ao Mei ◽  
Jin Le Lan ◽  
Yuan Hua Lin

Ca2Co2O5 ceramic powders were synthesized by the coprecipitation method and consolidated by spark plasma sintering (SPS) technique.The observation by the SEM indicated that the ceramics body showed fine and layer microstructure.The density of the body increased with an increase of the fritting temperature.XRD patterns showed that the ceramics sample exhibits inpure phase with increasing the sintering temperayure to 850°C and that the grain was preferentially oriented.The electrical conductivity was reduce and the Seebeck coefficient slightly increased with an increase of the sintering temperature.As a result,the thermoelectric properties of the sample prepared by SPS at 800 °C for 5 min was better than the sample prepared by SPS at 750 °C for 5 min at high temperature.The sample treated by the SPS process under the condition of 800 °C,40 MPa and 5 min showed the maximum power factor (PF) of 3.85×10-4W∙m-1∙K-2 at 923 K.


1999 ◽  
Vol 14 (1) ◽  
pp. 209-212 ◽  
Author(s):  
Masatoshi Ito ◽  
Won-Son Seo ◽  
Kunihito Koumoto

PbTe thin films with fine grains were successfully fabricated by the gas evaporation method. Thermoelectric properties, i.e., Seebeck coefficient and electrical conductivity, both decreased with decreasing grain size. This was attributed to the decrease in carrier mobility exceeding the increase in carrier concentration with decreasing grain size. It was clarified that the effects of grain boundaries and of oxidation on carrier mobility are considerably large.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340006 ◽  
Author(s):  
JINGSHU XU ◽  
CHENGUANG FU ◽  
JIAN XIE ◽  
XINBING ZHAO ◽  
TIEJUN ZHU

The p-type skutterudite compounds of ( Pr 0.25 Nd 0.75)x Fe 3 CoSb 12 (x = 0.67–0.78) have been successfully synthesized by levitation melting followed by annealing and spark plasma sintering. The thermoelectric properties have been characterized by the measurements of Seebeck coefficient, electrical conductivity and thermal conductivity in the temperature range from 300 K to 850 K. The improvement in the thermoelectric properties was realized due to the reduction in the lattice thermal conductivity when the voids were partially filled by Pr 0.25 Nd 0.75. The maximum ZT value of ~ 0.83 for ( Pr 0.25 Nd 0.75)0.76 Fe 3 CoSb 12 was obtained at 700 K.


2015 ◽  
Vol 3 (40) ◽  
pp. 10518-10524 ◽  
Author(s):  
Sevan Chanakian ◽  
Umut Aydemir ◽  
Alex Zevalkink ◽  
Zachary M. Gibbs ◽  
Jean-Pierre Fleurial ◽  
...  

The Zintl phase Eu5In2−xZnxSb6 (x = 0, 0.025, 0.05, 0.1, 0.2) with optimized p-type carrier concentration displays a zT of up to 0.4 at ∼660 K.


Author(s):  
Mi-Kyung Han ◽  
Yingshi Jin ◽  
Da-Hee Lee ◽  
Sung-Jin Kim

In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at% CuI and 1/2x at% Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot~1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping.


Sign in / Sign up

Export Citation Format

Share Document