Optical and Mechanical Properties of Photoassisted, Self-assembled Nanoparticle Films

2003 ◽  
Vol 797 ◽  
Author(s):  
G. A. Gaddy ◽  
G. A. Miner ◽  
Diane M. Stoakley ◽  
Edward P. Locke ◽  
Rick L. Moore ◽  
...  

ABSTRACTThis paper presents research funded under the Defense Advanced Research Projects Agency (DARPA) MetaMaterials program for design and development of nanoparticle based, mesoscale electromagnetic and optical materials. Specifically, we present results of formulation and near infrared measurement-model validation for photoassisted, self-assembled multilayer metallic nanoparticle films. The multilayer films may be used as optical filters and absorbers. We demonstrate that nanoparticles can be formed in advanced polymer films that exhibit new electromagnetic constitutive properties. Metal nanoparticle films are produced from a single homogeneous resin containing a soluble precursor. Films cast from doped resins are exposed to UV radiation followed by a controlled thermal cure. The combination of UV exposure and thermal curing creates a multiphase material composed of low volume fractions of dispersed metallic Pd clusters (10–20 nm in size) and high concentrations of Pd nanoparticles which form surface and embedded metallic layers in the films. The layer separation is a function of UV exposure. These materials show significant absorption in the optical and near IR region of the spectrum. Furthermore, these films exhibit mechanical properties similar to bi-metallic layers, specifically, the films display reversible bending with exposure to light and an accompanying rapid temperature increase. This paper presents formulation processes, optical-mechanical measurements and measurement model comparison.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 822
Author(s):  
Jy-Jiunn Tzeng ◽  
Tzu-Sen Yang ◽  
Wei-Fang Lee ◽  
Hsuan Chen ◽  
Hung-Ming Chang

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni’s post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal–Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.


2020 ◽  
Vol 01 (01) ◽  
Author(s):  
M A Zulhakimie ◽  
◽  
Anika Zafiah M. Rus ◽  
N S S Sulong ◽  
A Syah Z A ◽  
...  

Wood powder filler applied to the bio-based and epoxy polymer foams has the potential to reinforce the polymer foam structure. The 'Meranti' wood filler type was used as the filler in this analysis. In order to observe the pore size of each sample when exposed to different hours of UV exposure using optical microscopy (OM), this study was made.This analysis was conducted to compare the mechanical properties of each sample with different filler ratios of 0 wt%, 5 wt%, 10 wt%, 15wt% and 20 wt% at different UV exposure hours, which is 0 hour to 6000 hours with a 2000 hour rapid increase. Using the DMA Q800 TA unit, the mechanical properties were studied. In order to obtain the product of their mechanical properties, samples having a scale of 40 x 10 x 5 mm were clamped into the machine. The results will show the value of tan δ, loss modulus and storage modulus from the DMA test.The tan δ value shows that the high tanδvalue will be produced by the higher ratio filler. In contrast to bio-based polymer foams, epoxy polymer foams with powder fillers have the highest tan δ value. It shows that the higher filler ratio can be reported with the lower tan δ value. As the filler ratio filler in the polymer foams increased, the consequence of storage and loss modulus was found to increase. The greater the modulus of loss and the modulus of storage, the lower the temperature. As energy is lost as heat during UV irradiation exposure, bio-based polymer foams with a high powder filler ratio can dissipate more energy.


2021 ◽  
pp. 2101178
Author(s):  
Shay Goff Wallace ◽  
Nathan P. Bradshaw ◽  
Nicholas X. Williams ◽  
Justin H. Qian ◽  
Karl W. Putz ◽  
...  

2012 ◽  
Vol 100 (6) ◽  
pp. 061109 ◽  
Author(s):  
Shiyang Zhu ◽  
H. S. Chu ◽  
G. Q. Lo ◽  
P. Bai ◽  
D. L. Kwong

Author(s):  
Berta Carrión-Ruiz ◽  
José Luis Lerma

This paper tackles principal component analysis (PCA) in images that include wavelengths between 380-1000 nm. Our approach is focussed on taking advantage of the potencial of ultraviolet and infrarred images, in combination with the visible ones, to improve documentation process and rock art analysis. In this way, we want to improve the discrimination between pigment and support rock, and analyse the spectral behaviour of rock art paintings in the ultraviolet and infrared regions. Three images were used, one image from the ultraviolet (UV) region, one from the visible region (VIS) and another one from the near infrared region (NIR). Optical filters coupled to the camera optics were used to take the images. These filters capture specific wavelengths excluding radiation that we are not interested in registering. Finally, PCA is applied to the acquired images. The results obtained demonstrate the PCA usefulness with imagery in this field and also it is possible to extract some conclusions about the correspondent paint pigments.http://dx.doi.org/10.4995/CIGeo2017.2017.6597


2006 ◽  
Vol 78 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Edward T. Castellana ◽  
Sho Kataoka ◽  
Fernando Albertorio ◽  
Paul S. Cremer

Sign in / Sign up

Export Citation Format

Share Document