scholarly journals Mechanical Properties and Biocompatibility of Urethane Acrylate-Based 3D-Printed Denture Base Resin

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 822
Author(s):  
Jy-Jiunn Tzeng ◽  
Tzu-Sen Yang ◽  
Wei-Fang Lee ◽  
Hsuan Chen ◽  
Hung-Ming Chang

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni’s post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal–Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.




2019 ◽  
Vol 25 (6) ◽  
pp. 1017-1029
Author(s):  
Javier Navarro ◽  
Matthew Din ◽  
Morgan Elizabeth Janes ◽  
Jay Swayambunathan ◽  
John P. Fisher ◽  
...  

Purpose This paper aims to study the effects of part orientation during the 3D printing process, particularly to the case of using continuous digital light processing (cDLP) technology. Design/methodology/approach The effects of print orientation on the print accuracy of microstructural features were assessed using microCT imaging and mechanical properties of cDLP microporous scaffolds were characterized under simple compression and complex biaxial loading. Resin viscosity was also quantified to incorporate this factor in the printing discussion. Findings The combined effect of print resin viscosity and the orientation and spacing of pores within the structure alters how uncrosslinked resin flows within the construct during cDLP printing. Microstructural features in horizontally printed structures exhibited greater agreement to the design dimensions than vertically printed constructs. While cDLP technologies have the potential to produce mechanically isotropic solid constructs because of bond homogeneity, the effect of print orientation on microstructural feature sizes can result in structurally anisotropic porous constructs. Originality/value This work is useful to elucidate on the specific capabilities of 3D printing cDLP technology. The orientation of the part can be used to optimize the printing process, directly altering parameters such as the supporting structures required, print time, layering, shrinkage or surface roughness. This study further detailed the effects on the mechanical properties and the print accuracy of the printed scaffolds.



Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1655 ◽  
Author(s):  
Giuseppe Melilli ◽  
Irene Carmagnola ◽  
Chiara Tonda-Turo ◽  
Fabrizio Pirri ◽  
Gianluca Ciardelli ◽  
...  

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco’s Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.





Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3961 ◽  
Author(s):  
Hong Xiao ◽  
Wei Han ◽  
Yueke Ming ◽  
Zhongqiu Ding ◽  
Yugang Duan

Three-dimensional printing of continuous carbon fiber/epoxy composites (CCF/EPCs) is an emerging additive manufacturing technology for fiber-reinforced polymer composites and has wide application prospects. However, the 3D printing parameters and their relationship with the mechanical properties of the final printed samples have not been fully investigated in a computational and quantifiable way. This paper presents a sensitivity analysis (SA)-based parameter optimization framework for the 3D printing of CCF/EPCs. A surrogate model for a process parameter–mechanical property relationship was established by support vector regression (SVR) analysis of the experimental data on flexural strength and flexural modulus under different process parameters. An SA was then performed on the SVR surrogate model to calculate the importance of each individual 3D printing parameter on the mechanical properties of the printed samples. Based on the SA results, the optimal 3D printing parameters and the corresponding flexural strength and flexural modulus of the printed samples were predicted and verified by experiments. The results showed that the proposed framework can serve as a high-accuracy tool to optimize the 3D printing parameters for the additive manufacturing of CCF/EPCs.



2016 ◽  
Vol 368 ◽  
pp. 170-173
Author(s):  
Jiří Bobek ◽  
Jiří Šafka ◽  
Martin Seidl ◽  
Jiří Habr

This paper deals with mechanical properties research of innovative polymer multiphase metal and polymer composite materials consisting of matrix and isotropic or anisotropic oriented deterministic fractal shapes made by 3D printing. By creating of reinforcing internal structure consisting of deterministic fractal connected shapes is possible to gain unlimited mechanical properties directing. These fractal shapes - placed in multiphase system matrix – are significantly influencing whole material system mechanical properties mainly in case of stress on the limit of strength, proportional elongation on the limit of strength or tensile/ flexural modulus. Fractal shapes are also possible to properly locate, orient or shape modify according to potential material using with goal to gain maximal efficiency of fractal shapes occurrence. Producing of this multiphase system is realized by the help of 3D printing technology. Internal fractal shape structure is 3D printed from aluminium. This feature is in the next step over injected by polymer. So is possible to create any fractal shapes placed in polymer matrix which are by another technology unmanufacturable. Mechanical properties analyse is performed with respect to fractal shape type, fractal dimension, and fractal shape orientation.



2010 ◽  
Vol 21 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Fabiana Gouveia Straioto ◽  
Antonio Pedro Ricomini Filho ◽  
Alfredo Júlio Fernandes Neto ◽  
Altair Antoninha Del Bel Cury

The addition of different polymers, such as polytetrafluorethylene (PTFE), to denture base resins could be an option to modify acrylic resin mechanical properties. This study evaluated the surface hardness, impact and flexural strength, flexural modulus and peak load of 2 acrylic resins, one subjected to a long and another subjected to a short polymerization cycle, which were prepared with or without the addition of 2% PTFE. Four groups were formed according to the polymerization cycle and addition or not of PTFE. Forty specimens were prepared for each test (10 per group) with the following dimensions: hardness (30 mm diameter x 5 mm thick), impact strength (50 x 6 x 4 mm) and flexural strength (64 x 10 x 3.3 mm) test. The results of the flexural strength test allowed calculating flexural modulus and peak of load values. All tests were performed in accordance with the ISO 1567:1999 standard. Data were analyzed statistically by ANOVA and Tukey's test with the level of significance set at 5%. No statistically significant differences (p>0.05) were found for surface hardness. Flexural strength, impact strength and peak load were significantly higher (p<0.05) for resins without added PTFE. The flexural modulus of the acrylic resin with incorporated 2% PTFE polymerized by long cycle was significantly higher (p<0.05) than that of the other resins. Within the limits of this study, it may be concluded that the addition of PTFE did not improve the mechanical properties of the evaluated acrylic resins.



2021 ◽  
Vol 11 (15) ◽  
pp. 6835
Author(s):  
Sang-U Bae ◽  
Birm-June Kim

Photopolymer composites filled with cellulose nanocrystal (CNC) and/or inorganic nanofillers were fabricated by using digital light processing (DLP) 3D printing. To investigate the effects of different CNC lyophilization concentrations and behaviors of CNC particles in the photopolymer composites, morphological and mechanical properties were analyzed. CNC loading levels affected the morphological and mechanical properties of the filled composites. Better CNC dispersion was seen at a lower lyophilization concentration, and the highest mechanical strength was observed in the 0.25 wt% CNC-filled composite. Furthermore, nano-precipitated calcium carbonate (nano-PCC) and nanoclay were added to photocurable resins, and then the effect of inorganic nanofillers on the morphological and mechanical properties of the composites were evaluated. By analyzing the morphological properties, the stress transfer mechanism of nano-PCC and nanoclay in the photopolymer composites was identified and related models were presented. These supported the improved mechanical strength of the composites filled with CNC, nano-PCC, and nanoclay. This study suggested a new approach using wood-derived cellulose nanomaterials and inorganic nanofillers as effective fillers for DLP 3D printing.



2020 ◽  
Author(s):  
Jung-Hyun Park ◽  
Hyun Lee ◽  
Jong-Woo Kim ◽  
Ji-Hwan Kim

Abstract Background Three-dimensional (3D) printing is widely used in the fabrication of dental prostheses; however, the influence of dental materials used for 3D printing on temporary restoration of fibroblasts in tissues is unclear. Thus, the influence of different dental materials on fibroblasts were investigated. Methods Digital light processing (DLP) type 3D printing was used. Specimens in the control group were fabricated by mixing liquid and powder self-curing resin restoration materials. The temporary resin materials used were Model, Castable, Clear-SG, Tray, and Temporary, and the self-curing resin materials used were Lang dental, Alike, Milky blue, TOKVSO CUREFAST, and UniFast III. Fibroblast cells were cultured on each specimen and subsequently post-treated for analysis. Morphology of the adhered cells were observed using a confocal laser scanning microscope (CLSM) and a scanning electron microscope (SEM). Results CLSM and SEM cell imaging revealed that the 3D printed material group presented better cell adhesion with well-distributed filopodia compared to that in the conventional resin material group. Cell proliferation was significantly higher in the 3D printing materials. Conclusion This indicates that using resins fabricated by 3D printing technology rather than the ones fabricated by self-curing technology is recommended for the fabrication of dental temporary restorations.



Sign in / Sign up

Export Citation Format

Share Document