Pitting Studies Under Anoxic Conditions on Candidate Container Materials AISI 316L hMo and UHB 904L for The Disposal of HLW in Argillaceous Formations

2003 ◽  
Vol 807 ◽  
Author(s):  
Bruno Kursten ◽  
Frank Druyts

ABSTRACTStainless steel is being envisaged as the primary candidate container material for the final disposal of vitrified HLW in deep geological argillaceous formations in Belgium. The impact of an evolving underground repository environment, i.e. a progressive change from oxic to anoxic conditions (due to the consumption of entrapped oxygen), on the pitting behaviour of austenitic stainless steels AISI 316L hMo and UHB 904L was studied. CPP-experiments were performed in synthetic solutions, which are representative for the near-field chemistry of an underground repository. The solutions contained various amounts of Cl- (100–50,000 mg/L) at near-neutral pH. Experiments were conducted at 16 and 90°C.AISI 316L hMo and UHB 904L will not be subjected to immediate pitting problems neither under oxic, nor under anoxic conditions. However, AISI 316L hMo could present long-term pitting problems under oxic conditions. Pits are much easier initiated on AISI 316L hMo, for both oxic and anoxic conditions. The pits propagate in a rather similar manner under oxic conditions for both alloys, whereas under anoxic conditions the pits formed on AISI 316L hMo are much deeper. AISI 316L hMo is more susceptible to crevice attack.

Austentic stainless steel is one of the most suitable engineering material based on their superior resistance to corrosion and compatibility at high temperatures and high vacuum. However, the machinability of austenitic stainless steel is not very promising owing to lower thermal conductivity, higher degree of ductility and work hardenability. For meeting these challenges, unconventional machining procedures were evolved and can make any impenetrable design/profile on any work substance by acceptable controlling of various machining procedures. The main importance of this paper is to show the impact of machining parameters on Eco-cut Wire Electric Discharge Machining (WEDM) for disparate austenitic stainless steels (AISI 316L & 317L). Initially both the metals are machined on WEDM. Machining parameters like pulse on time(Pon), pulse off time(Poff), voltage(V) and wire tension(WT) are observed for both 316L and 317L stainless steel materials. A Box-Behnken Design (BBD) of response surface methodology (RSM) has been used for experimental work. The reaction of procedure is estimated by ANOVA analysis and response optimizer is used for optimum level checking. A series of trial runs were carried out on both the machined specimens for identifying better material removal rate(MRR), cutting speed(CS) and surface roughness(Ra).


2012 ◽  
Vol 268-270 ◽  
pp. 269-274
Author(s):  
Yang Li ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Ying Chun Shan

The nitriding of AISI 316L stainless steels has been carried out at anodic potential in a space enclosed by an active screen that consists of two cylinders with different diameter. These two cylinders made up a hollow cathode in a discharge system. Nitriding experiments were carried out on AISI 316L stainless steel at 450°C for times ranging from 1 to 24h in ammonia atmosphere. The intensity of electron bombardment on the surface of sample was low due to the anodic sheath, the disadvantages attached to conventional plasma nitriding were completely avoided. The phase composition, the thickness and the surface topography of the nitrided layer, as well as its hardness, were investigated by X-ray diffraction, scanning electron microscopy and a micro-hardness tester. The surface microhardness values and the thickness of the hardened layers increased as the nitriding time increased. Tribology properties of the untreated and nitrided 316L stainless steel have been investigated using a ball-on-disc tribometer with AISI52100 ball as the counterface. The results showed wear resistance of the AISI 316L stainless steels were greatly increased by anodic nitriding, owing to the strengthening effect of expanded austenite formed in the modified surface layer.


2018 ◽  
Vol 941 ◽  
pp. 263-268 ◽  
Author(s):  
Robert Fussik ◽  
Gero Egels ◽  
Werner Theisen ◽  
Sebastian Weber

Hydrogen is increasingly considered as fuel for future mobility or for stationary applications. However, the safe distribution and storage of pure hydrogen is only possible with suitable materials. Interstitially dissolved hydrogen atoms in the lattice of numerous metals are responsible for hydrogen embrittlement (HE). If hydrogen is introduced by an external source, it is called hydrogen environment embrittlement (HEE). Commonly, steels like AISI 316L with a high resistance to HEE include a large number of alloying elements and in high amount. High alloying levels result in a decrease of cost-efficiency. Therefore, the systematic investigation of lean-alloyed austenitic stainless steels is necessary in order to understand the mechanism of HEE. For that purpose, the steel grades AISI 304L and AISI 316L are selected in this work. Tensile tests in air and 400 bar hydrogen gas atmospheres are performed. After tensile testing in H, AISI 304L revealed secondary cracks at the specimen surface, which are related to the local austenite stability, which in turn is affected by the level of micro-segregation. The microstructural investigations of the crack environment directly contribute to the understanding of the micro-mechanisms of HEE. Property-maps generated from experimentally measured distributions of alloying elements allow to correlate the impact of micro-segregations on the local austenite stability. It is shown, that local segregation-bands affect the initiation and propagation of secondary cracks. In this context, the local austenite stability which is significantly affected by the Ni distribution will be discussed in detail by comparison of the metastable austenitic steel grades AISI 304L and AISI 316L.


2012 ◽  
Vol 57 (3) ◽  
pp. 789-797 ◽  
Author(s):  
M. Skałon ◽  
J. Kazior

It is well known that boron is widely used in order to enhance sintering process for obtaining high density of sintered iron alloys. It was found that even a small amount of elemental boron added to iron based powder compacts, produces significant increase in densification rate upon formation of a liquid phase. Due to the attractive characteristic the use of boron has also been actively investigated for enhancing sintering stainless steels powders. In present research boron was added as a part of master alloy, which has been designed to provide the formation of wetting liquid phase, with accomplished characteristics for manufacturing controlled densification of sintered austenitic stainless steels powders AISI 316L. In this paper the influence of sintering atmosphere and the boron in 0,1; 0,2; 0,3 and 0,4 wt. % amount on the density, microstructure and selected properties of sintered austenitic stainless steels were reported. Green compacts obtained by cold compaction at 600 MPa reached densities around 6,2 g/cm3. The sintering process was carried out both in pure dry hydrogen atmosphere and in vacuum at temperature 1240°C using dilatometer Netzsch DIL 402C. In order to interpret the influence of sintering atmosphere and boron content on the sintering behaviour of boron alloyed austenitic stainless steels powders during heating and isothermal holding, the evolution of the dilatometric curves have been discussed. The as-sintered microstructures were characterized under the SEM (EDS), while the pore morphology by the image analysis. In conclusion it could be affirmed that the addition of the master alloy containing boron to austenitic stainless steels powders, produces a permanent liquid phase that enhances densification compacts during sintering, in particular in hydrogen atmosphere. For this reason the results are promising from a technological point of view, because boron addition could extend applications of sintered stainless steel both with respect to lower sintering temperature and shorter time necessary to obtain well rounded pores which are desirable with respect to mechanical properties and corrosion resistance.


2014 ◽  
Vol 627 ◽  
pp. 205-208
Author(s):  
Mattias Calmunger ◽  
Guo Cai Chai ◽  
Sten Johansson ◽  
Johan Moverare

Structural integrity is crucial for the safety of power plants with higher efficiency to meet the increasing global energy consumption. High-temperature environment will demand not only improved high-temperature corrosion resistance but also a maintained sufficient toughness. This study investigates how long term high-temperature environment influence the impact toughness of two austenitic stainless steels (AISI 304 and Sandvik SanicroTM 28) and one nickel-bas alloy (Alloy 617). Alloy 617 has shown increasing impact toughness with both increasing temperature and time, up to 700°C and 3 000 hours, while the two austenitic stainless steels have shown the opposite for the same conditions. At 10 000 hours the impact toughness of Alloy 617 has decreased but the alloy still possess great toughness. Both austenitic stainless steels show embrittlement due to brittle σ-phase and Alloy 617 seems to gain good impact toughness performance from small evenly distributed precipitates.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract CarTech 347 is a niobium+tantalum stabilized austenitic stainless steel. Like Type 321 austenitic stainless steel, it has superior intergranular corrosion resistance as compared to typical 18-8 austenitic stainless steels. Since niobium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 should be considered for applications requiring intermittent heating between 425 and 900 °C (800 and 1650 °F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1339. Producer or source: Carpenter Technology Corporation.


2004 ◽  
Vol 128 (2) ◽  
pp. 370-376 ◽  
Author(s):  
Bruce A. Pint

New materials are being evaluated to replace type 347 stainless steel in microturbine recuperators operating at higher temperatures in order to increase the efficiency of the microturbine. Commercial alloys 120 and 625 are being tested along with potentially lower cost substitutes, such as Fe-20Cr-25Ni and Fe-20Cr-20Ni. Long-term testing of these materials at 650–700 °C shows excellent corrosion resistance to a simulated exhaust gas environment. Testing at 800 °C has been used to further differentiate the performance of the various materials. The depletion of Cr from foils of these materials is being used to evaluate the rate of attack. Although those alloys with the highest Ni and Cr contents have longer lives in this environment, lower alloyed steels may have sufficient protection at a lower cost.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6790
Author(s):  
Viera Zatkalíková ◽  
Juraj Halanda ◽  
Dušan Vaňa ◽  
Milan Uhríčik ◽  
Lenka Markovičová ◽  
...  

Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface technology which enables the improvement of tribological properties without a deterioration of the corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl solution at 37 ± 0.5 °C) and compared with a non-treated surface. Results of the three performed independent corrosion tests consistently confirmed a significant increase in the corrosion resistance after two doses of PIII nitriding.


Sign in / Sign up

Export Citation Format

Share Document