Comprehensive Study of Impact Ionization Coefficients of 4H-SiC

2004 ◽  
Vol 815 ◽  
Author(s):  
T. Hatakeyama ◽  
T. Watanabe ◽  
K. Kojima ◽  
N. Sano ◽  
T. Shinohe ◽  
...  

AbstractThe electric field dependence and anisotropy of the impact ionization coefficients of 4H-SiC are investigated by means of the avalanche breakdown behavior of p+n diodes. The breakdown voltages as a function of doping density and the multiplication factors of a leakage current are obtained using p+n diode fabricated on (0001) and (1120) 4H-SiC epitaxial wafers. The obtained impact ionization coefficients show large anisotropy; the breakdown voltage of a p+n diode on (1120) wafer is 60% of that on (0001) wafer. We have shown that anisotropy of the impact ionization coefficients is attributable to the anisotropy of saturation velocity originated from the electronic structure of 4H-SiC.

2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


2007 ◽  
Vol 556-557 ◽  
pp. 339-342 ◽  
Author(s):  
W.S. Loh ◽  
C. Mark Johnson ◽  
J.S. Ng ◽  
Peter M. Sandvik ◽  
Steve Arthur ◽  
...  

Hole initiated avalanche multiplication characteristics of 4H-SiC avalanche photodiodes have been studied. The diodes had n+-n-p SiC epitaxial layers grown on a p-type substrate. These 1 mm2 devices had very low dark currents and exhibited sharp breakdown at voltages of approximately 500V. The diodes multiplication characteristics appeared to be identical when the wavelength of the illuminating light from the top varied from 288 to 325nm, implying that almost pure hole initiated multiplication was occurring. The multiplication factor data were modelled using a local multiplication model with impact ionization coefficients of 4H-SiC reported by various authors. The impact ionization coefficients extracted from submicron devices by Ng et al. were found to give accurate predictions for multiplication factors within the uncertainties of the doping levels. This result suggests that their ionization coefficients can be applied to thicker bulk 4H-SiC structures.


2020 ◽  
Vol 92 (1) ◽  
pp. 10301
Author(s):  
Tat Lung Wesley Ooi ◽  
Pei Ling Cheang ◽  
Ah Heng You ◽  
Yee Kit Chan

In this work, Monte Carlo model is developed to investigate the avalanche characteristics of GaN and Al0.45Ga0.55N avalanche photodiodes (APDs) using random ionization path lengths incorporating dead space effect. The simulation includes the impact ionization coefficients, multiplication gain and excess noise factor for electron- and hole-initiated multiplication with a range of thin multiplication widths. The impact ionization coefficient for GaN is higher than that of Al0.45Ga0.55N. For GaN, electron dominates the impact ionization at high electric field while hole dominate at low electric field whereas Al0.45Ga0.55N has hole dominate the impact ionization at higher field while electron dominate the lower field. In GaN APDs, electron-initiated multiplication is leading the multiplication gain at thinner multiplication widths while hole-initiated multiplication leads for longer widths. However for Al0.45Ga0.55N APDs, hole-initiated multiplication leads the multiplication gain for all multiplication widths simulated. The excess noise of electron-initiated multiplication in GaN APDs increases as multiplication widths increases while the excess noise decreases as the multiplication widths increases for hole-initiated multiplication. As for Al0.45Ga0.55N APDs, the excess noise for hole-initiated multiplication increases when multiplication width increases while the electron-initiated multiplication increases with the same gradient at all multiplication widths.


2008 ◽  
Vol 55 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
FrÉdÉric Mayer ◽  
Cyrille Le Royer ◽  
Denis Blachier ◽  
Laurent Clavelier ◽  
Simon Deleonibus

2003 ◽  
Vol 94 (1) ◽  
pp. 423-430 ◽  
Author(s):  
Louis Tirino ◽  
Michael Weber ◽  
Kevin F. Brennan ◽  
Enrico Bellotti ◽  
Michele Goano

2006 ◽  
Vol 20 (29) ◽  
pp. 4929-4936
Author(s):  
M. OZER ◽  
M. AHMETOGLU ◽  
N. APRAILOV

The dependence of reverse-biased leakage current on both voltage and temperature for InP - In x Ga 1-x As y P 1-y DH (double heterostructures) has been analyzed. We find that at the whole of the temperature range and at a wide range of reverse bias voltages, the reverse current varies exponentially with applied voltage, indicating that the band-to-band tunneling current mechanism prevails. An agreement is obtained between theory and experimental results. The tunneling current becomes substantial at peak junction electric fields as low as 105 V/m due to the small direct energy gaps and small effective masses of the structures tested. The process of breakdown in the investigated structures was of the avalanche type. The impact ionization coefficients in In x Ga 1-x As y P 1-y have been experimentally determined for composition x=0.68.


2006 ◽  
Vol 955 ◽  
Author(s):  
Shengkun Zhang ◽  
X. Zhou ◽  
Wubao Wang ◽  
R. R. Alfano ◽  
A. M. Dabiran ◽  
...  

ABSTRACTIn this work, electro-luminescence (EL) of a AlGaN p-i-n diode have been investigated in both avalanche and injection modes. The active i-region of the diode consists of Al0.1Ga0.9N/Al0.15Ga0.85N MQWs. Strong interband luminescence from the Al0.1Ga0.9N active layers was observed when operating the device in both avalanche and injection modes. The threshold voltage for avalanche breakdown is as low as 9 V. This indicates that the impact ionization coefficient of electrons is greatly enhanced in these Al0.1Ga0.9N/Al0.15Ga0.85N MQWs comparing to AlGaN bulk materials. Polarization-induced electric fields in the Al0.1Ga0.9N well layers are believed to be responsible for the enhancement of the ionization coefficient. In a control sample that has higher defect density, the electroluminescence was dominated by long-wavelength emissions, which results from impact ionizations of the defect levels.


Sign in / Sign up

Export Citation Format

Share Document