New Electroluminescence Spectrum from Co-doped ZnS:(Mn, Si) Films Prepared by Chemical Vapor Deposition with Laser Ablation

2004 ◽  
Vol 829 ◽  
Author(s):  
Makoto Ozawa ◽  
Tomomasa Satoh ◽  
Takashi Hirate

ABSTRACTCo-doped ZnS:(Mn, Si) films were fabricated. The ZnS was synthesized by a low-pressure thermal chemical vapor deposition. Metal Zn vapor and H2S gas were used as the CVD-precursors. Mn and Si were doped using a laser ablation technique during the ZnS growth. A solid MnSi alloy (Mn:Si = 1:1) was used as the laser ablation target. The films were deposited at the range from 650°C to 750°C. At the deposition temperature of 650°C, only a EL emission peak at 585 nm same as conventional ZnS:Mn films appeared, i.e., the Si co-doping had no effects on the EL spectrum. At the deposition temperature of 700°C, the Si co-doping to ZnS:Mn film caused the shift of the EL emission peak at 585 nm to shorter wavelength by 15 nm and provided new EL emission at 760 nm. The film deposited at 750°C exhibited new UV and blue EL emissions at 390 nm and 450 nm, respectively, although the host material of the film differed from usual ZnS.

2001 ◽  
Vol 688 ◽  
Author(s):  
Hiroshi Funakubo ◽  
Kuniharu Nagashima ◽  
Masanori Aratani ◽  
Kouji Tokita ◽  
Takahiro Oikawa ◽  
...  

AbstractPb(Zr,Ti)O3 (PZT) is one of the most promising materials for ferroelectric random access memory (FeRAM) application. Among the various preparation methods, metalorganic chemical vapor deposition (MOCVD) has been recognized as a most important one to realize high density FeRAM because of its potential of high-step-coverage and large-area-uniformity of the film quality.In the present study, pulsed-MOCVD was developed in which a mixture of the source gases was pulsed introduced into reaction chamber with interval. By using this deposition technique, simultaneous improvements of the crystallinity, surface smoothness, and electrical property of the film have been reached by comparing to the conventional continuous gas-supplied MOCVD. Moreover, this film had larger remanent polarization (Pr) and lower leakage current density. This is owing to reevaporation of excess Pb element from the film and increase of migration on the surface of substrate during the interval time.This process is also very effective to decrease the deposition temperature of the film having high quality. In fact, the Pr and the leakage current density of polycrystalline Pb(Zr0.35Ti0.65)O3 film deposited at 415 °C were 41.4 μC/cm2 and on the order of 10−7 A/cm2 at 200 kV/cm. This Pr value was almost the same as that of the epitaxially grown film deposited at 415 °C with the same composition corrected for the orientation difference. This suggests that the polycrystalline PZT film prepared by pulsed-MOCVD had the epitaxial-grade ferroelectric properties even through the deposition temperature was as low as 415 °C. Moreover, large “process window” comparable to the process window at 580 °C, above 150 °C higher temperature and was widely used condition, was achieved even at 395°C by the optimization of the deposition condition.


2017 ◽  
Vol 897 ◽  
pp. 3-6 ◽  
Author(s):  
Hiromasa Suo ◽  
Kazuma Eto ◽  
Tomohisa Kato ◽  
Kazutoshi Kojima ◽  
Hiroshi Osawa ◽  
...  

The growth of n-type 4H-SiC crystal was performed by physical vapor transport (PVT) growth method by using nitrogen and aluminum (N-Al) co-doping. Resistivity of N-Al co-doped 4H-SiC was as low as 5.8 mΩcm. The dislocation densities of N-Al co-doped substrates were evaluated by synchrotron radiation X-ray topography (SXRT). In addition, epitaxial growth was performed on the N-Al co-doped substrates by chemical vapor deposition (CVD). No double Shockley type stacking fault was observed in the epitaxial layer.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 317
Author(s):  
Jun-Hyun Kim ◽  
Jeong Geun Bak ◽  
Chang-Koo Kim

In this study, we demonstrated that the deposition of Sn on Ni–Fe wires using low-pressure chemical vapor deposition (LPCVD) can be used to control the electrical resistivity of the wires. Furthermore, the effect of the deposition temperature on the resistivity of the Ni–Fe wires was investigated. The resistivity of the Sn-deposited Ni–Fe wires was found to increase monotonically with the deposition temperature from 550 to 850 °C. Structural and morphological analyses revealed that electron scattering by Ni3Sn2 and Fe3Sn particulates, which were the reaction products of LPCVD of Sn on the surface of the Ni–Fe wires, was the cause of the resistivity increase. These coalesced particulates displayed irregular shapes with an increase in the deposition temperature, and their size increased with the deposition temperature. Owing to these particulate characteristics, the Sn content increased with the deposition temperature. Furthermore, the temperature dependency of the Sn content followed a pattern very similar to that of the resistivity, indicating that the atomic content of Sn directly affected the resistivity of the Ni–Fe wires.


2012 ◽  
Vol 476-478 ◽  
pp. 2353-2356
Author(s):  
Wen Qi Dai ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Yi Feng Liu ◽  
Ke Tang ◽  
...  

Nanocrystalline diamond (NCD) films were synthesized by hot-filament chemical vapor deposition (HFCVD) method at different temperatures (600 °C, 620°C, 640°C and 660°C). The AFM and Raman analyses demonstrated that deposition temperature has a great effect on the surface roughness and quality of NCD films and 620°C is the temperature to grow NCD films with smooth surfaces.


Sign in / Sign up

Export Citation Format

Share Document