Nanoindentation of Ion Implanted and Deposited Amorphous Silicon

2004 ◽  
Vol 841 ◽  
Author(s):  
J. S. Williams ◽  
B. Haberl ◽  
J. E. Bradby

ABSTRACTThe deformation behavior of both ion-implanted and deposited amorphous Si (a-Si) films has been studied using spherical nanoindentation, followed by analysis using Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). Indentation was carried out on both unannealed a-Si films (the so-called unrelaxed state) and in ion implanted films that were annealed to 450°C to fully relax the amorphous film. The dominant mode of deformation in unrelaxed films was via plastic flow of the amorphous phase rather than phase transformation, with measured hardness being typically 75–85% of that of crystalline Si. In contrast, deformation via phase transformation was clearly observed in the relaxed state of ion implanted a-Si, with the load-unload curves displaying characteristic discontinuities and Raman and XTEM indicating the presence of high-pressure crystalline phases Si-III and Si-XII following pressure release. In such cases the measured hardness was within 5% of that of the crystalline phase.

2004 ◽  
Vol 843 ◽  
Author(s):  
J. S. Williams ◽  
B. Haberl ◽  
J. E. Bradby

ABSTRACTThe deformation behavior of both ion-implanted and deposited amorphous Si (a-Si) films has been studied using spherical nanoindentation, followed by analysis using Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). Indentation was carried out on both unannealed a-Si films (the so-called unrelaxed state) and in ion implanted films that were annealed to 450°C to fully relax the amorphous film. The dominant mode of deformation in unrelaxed films was via plastic flow of the amorphous phase rather than phase transformation, with measured hardness being typically 75–85% of that of crystalline Si. In contrast, deformation via phase transformation was clearly observed in the relaxed state of ion implanted a-Si, with the load-unload curves displaying characteristic discontinuities and Raman and XTEM indicating the presence of high-pressure crystalline phases Si-III and Si-XII following pressure release. In such cases the measured hardness was within 5% of that of the crystalline phase.


Author(s):  
E. I. Alessandrini ◽  
M. O. Aboelfotoh

Considerable interest has been generated in solid state reactions between thin films of near noble metals and silicon. These metals deposited on Si form numerous stable chemical compounds at low temperatures and have found applications as Schottky barrier contacts to silicon in VLSI devices. Since the very first phase that nucleates in contact with Si determines the barrier properties, the purpose of our study was to investigate the silicide formation of the near noble metals, Pd and Pt, at very thin thickness of the metal films on amorphous silicon.Films of Pd and Pt in the thickness range of 0.5nm to 20nm were made by room temperature evaporation on 40nm thick amorphous Si films, which were first deposited on 30nm thick amorphous Si3N4 membranes in a window configuration. The deposition rate was 0.1 to 0.5nm/sec and the pressure during deposition was 3 x 10 -7 Torr. The samples were annealed at temperatures in the range from 200° to 650°C in a furnace with helium purified by hot (950°C) Ti particles. Transmission electron microscopy and diffraction techniques were used to evaluate changes in structure and morphology of the phases formed as a function of metal thickness and annealing temperature.


1989 ◽  
Vol 157 ◽  
Author(s):  
J. S. Custer ◽  
Michael O. Thompson ◽  
D. C. Jacobson ◽  
J. M. Poate ◽  
S. Roorda ◽  
...  

ABSTRACTThe density of amorphous Si was measured. Continuous and buried amorphous Si films were produced by 0.5-8 MeV Si implantation through a steel contact mask. Surface steps of amorphous Si stripes with initial thicknesses from 0.9 to ∼ 5.0 μm were measured using a surface profilometer. For implants up to 5 MeV, the amorphous Si is constrained laterally by the surrounding crystal and deforms plastically. The density of amorphous Si deduced from the surface step heights is 4.91 × 1022 cm-3, 1.7 ± 0.1 % less than the density of crystal Si (5.00 × 1022 cm-3).


1992 ◽  
Vol 259 ◽  
Author(s):  
T. George ◽  
R. P. Vasquez ◽  
S. S. Kim ◽  
R.W. Fathauer ◽  
W. T. Pike

ABSTRACTThe nature of light-emitting porous Si layers produced by non-anodic stain etching of p-type (100) Si substrates is studied. The layers were characterized by transmission electron microscopy as being amorphous in nature. X-ray photoelectron spectroscopy and electron spin resonance measurements show these layers to be composed mainly of a-Si. The formation mechanism of the a-Si is explored using by stain etching SiGe ‘marker’ layers within epitaxially grown Si films and by high temperature annealing. These experiments provide strong evidence for a spontaneous crystalline-amorphous phase transformation during the etching process.


1986 ◽  
Vol 74 ◽  
Author(s):  
R. Kwor ◽  
S. M. Tang ◽  
N. S. Alvi

AbstractThe effect of rapid thermal annealing on the crystallization of arsenic and boron implanted amorphous silicon films is studied. Amorphous Si films of 4000 Å were deposited using LPCVD and implanted with arsenic or boron to doses of 5 × 1013, 5 × 1014, and 5 × 1015 cm−2. These films were then annealed using an Eaton Nova-400 RTA system (with temperature ranging from 900 to 1200 °C and dwell time ranging from 1 to 30 sec). The annealed films were studied using transmission electron microscopy, Hall effect measurement and temperature coefficient of resistance measurement. The optimal annealing conditions for the films were found.


1989 ◽  
Vol 160 ◽  
Author(s):  
S.M. Prokes ◽  
A.K. Rai ◽  
W.E. Carlos

AbstractEpitaxial SiGe/Si heterostructures have been formed by wet oxidation from amorphous SiGe films deposited on Si(100). Amorphous SixGe1-x films were deposited at a vacuum of 10-7 Torr. The presence of an initial native oxide precluded solid phase epitaxy under standard annealing conditions, but epitaxy could be achieved by the use of wet oxidation. The samples were oxidized at 900°C for various times and examined in reflection electron diffraction, ellipsometry, cross-sectional and plan-view transmission electron diffraction, and electron spin resonance. The formation of the epitaxial layer and oxide has been examined, and an epitaxial growth model is suggested.


1992 ◽  
Vol 7 (6) ◽  
pp. 1350-1355 ◽  
Author(s):  
E. Ma ◽  
L.A. Clevenger ◽  
C.V. Thompson

We analyze the formation of VSi2 at the amorphous-vanadium-silicide/amorphous-Si interface by linear-heating and isothermal calorimetry, and cross-sectional transmission electron microscopy. We show evidence that indicates sporadic VSi2 nucleation with a steady-state nucleation rate after a transient period. The results are contrasted with those obtained for Al2Ni nucleating at the polycrystalline-Al/polycrystalline-Ni interface, where the kinetics appears to be controlled by growth of a fixed number of nuclei at quickly consumed preferred nucleation sites.


1990 ◽  
Vol 187 ◽  
Author(s):  
James S. Im ◽  
Harry A. Atwater

AbstractThe nucleation and transformation kinetics of the amorphous-to-crystal transition in Si films under 1.5 MeV Xe+ irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T = 480–580°C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting homogeneous nucleation. A significant enhancement in nucleation rate during high energy ion irradiation (6 orders of magnitude) was observed as compared with thermal crystallization, with an apparent activation energy of Qn = 3.9 ± 0.75 eV. Independent analyses of the temperature dependence of the incubation time, the crystal growth rate, and nucleation rate suggest that interface rearrangement kinetics and not the thermodynamic barrier to crystallization, are affected by ion irradiation.


Sign in / Sign up

Export Citation Format

Share Document