Recrystallization of Implanted LPCVD Amorphous Si Films Using Rapid Thermal Annealing

1986 ◽  
Vol 74 ◽  
Author(s):  
R. Kwor ◽  
S. M. Tang ◽  
N. S. Alvi

AbstractThe effect of rapid thermal annealing on the crystallization of arsenic and boron implanted amorphous silicon films is studied. Amorphous Si films of 4000 Å were deposited using LPCVD and implanted with arsenic or boron to doses of 5 × 1013, 5 × 1014, and 5 × 1015 cm−2. These films were then annealed using an Eaton Nova-400 RTA system (with temperature ranging from 900 to 1200 °C and dwell time ranging from 1 to 30 sec). The annealed films were studied using transmission electron microscopy, Hall effect measurement and temperature coefficient of resistance measurement. The optimal annealing conditions for the films were found.

1983 ◽  
Vol 23 ◽  
Author(s):  
D.L. Kwong ◽  
R. Kwor ◽  
B.Y. Tsaur ◽  
K. Daneshvar

ABSTRACTThe formation of composite TaSi2/n+ Poly-Si silicide films through the use of rapid thermal annealing (RTA) is investigated by x-ray diffraction, four point probe, scanning Auger microprobes (SAM) with ion sputter etching, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and capacitance-voltage (C-V) measurements. 0.2 μm polysilicon is deposited on oxidized Si wafer by LPCVD and doped with phosphorus. A layer of 2200 A TaSix is then co-sputtered on polysilicon samples from separate targets. These as-deposited films are then annealed by RTA in an argon ambient for 1 sec. and 10 sec. at various temperatures. X-ray diffraction and SAM results show the rapid formation of a uniform stoichiometric tantalum disilicide via Si migration from polysilicon. TEM micrographs show simlilar results for samples annealed at 1000°C in furnace for 30 min. or by RTA for 1 sec., exhibiting average grain size greater than 1000 A. Sheet resistance of samples annealed by furnace annealing and RTA are comparable. SEM micrographs indicate that the surface morphology of the RTA-annealed sample is superior to that obtained by furnace annealing. These results show that RTA may offer a practical solution to low-resistivity silicide formation in VLSI circuits.


1983 ◽  
Vol 25 ◽  
Author(s):  
H. Yamamoto ◽  
H. Ishiwara ◽  
S. Furukawa ◽  
M. Tamura ◽  
T. Tokuyama

ABSTRACTLateral solid phase epitaxy (L-SPE) of amorphous Si (a-Si) films vacuum-evaporated on Si substrates with SiO2 patterns has been investigated, in which the film first grows vertically in the regions directly contacted to the Si substrates and then grows laterally onto SiO2 patterns. It has been found from transmission electron microscopy and Nomarski optical microscopy that use of dense a-Si films, which are formed by evaporation on heated substrates and subsequent amorphization by Si+ ion implantation, is essentially important for L-SPE. The maximum L-SPE length of 5–6μm was obtained along the <010> direction after 10hourannealing at 600°C. The kinetics of the L-SPE growth has also been investigated.


1992 ◽  
Vol 70 (10-11) ◽  
pp. 1184-1193 ◽  
Author(s):  
D. J. Lockwood ◽  
G. C. Aers ◽  
L. B. Allard ◽  
B. Bryskiewicz ◽  
S. Charbonneau ◽  
...  

The optical and structural properties of porous Si films produced by electrochemical and chemical dissolution of Si have been studied by a variety of techniques. Raman scattering and transmission electron microscopy have shown the samples to contain crystalline Si wires and (or) spherites 3–8 nm in diameter and (or) amorphous Si. The optical absorption spectra and the wavelength, temperature, and lifetime dependence of the photoluminescence obtained from most of the samples are entirely consistent with the quantum confinement of excitons in Si nanostructures. Quite different photoluminescence was obtained from other samples composed only of amorphous Si, and this is attributed to the presence of silicon oxyhydride species.


1993 ◽  
Vol 8 (3) ◽  
pp. 467-472 ◽  
Author(s):  
Herbert L. Ho ◽  
Tue Nguyen ◽  
Julius C. Chang ◽  
Brian Machesney ◽  
Peter Geiss

Cobalt (Co)/silicon dioxide (SiO2) reactions during rapid thermal annealing (RTA) in an N2 ambient have been investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that islands consisting of Co and the cobalt oxide phase, Co3O4, form during high-temperature anneals (30 s−10 min at 800 °C). After a selective wet etch to remove the islands, groove-like features are produced in the SiO2 layer. The morphologies of the islands and grooves are strikingly similar, which strongly suggest that Co and the underlying SiO2 layer have reacted, most likely to form Co3O4. We propose that small concentrations of O2 are necessary to promote Co/SiO2 interactions.


1991 ◽  
Vol 224 ◽  
Author(s):  
S. Batra ◽  
K. Park ◽  
S. Banerjee ◽  
T. Smith ◽  
B. Mulvaney

AbstractLateral non-uniformities can be expected in the dopant diffusion front in the substrate in polysilicon-on-single crystal Si systems upon Rapid Thermal Annealing (RTA), because the grain boundaries in polysilicon act as fast diffusant pipelines and also possibly inject defects into the substrate, which can locally enhance diffusivities in the substrate due to dopant-point defect interactions. The lateral uniformity of As, B and P ultra-shallow junctions formed in the substrate by indiffusion from as-deposited amorphous or polysilicon films has been studied using concentration dependent etching and transmission electron microscopy. Due to a larger final grain size after annealing in the case of as-deposited amorphous Si films compared to asdeposited polysilicon films, there is significant lateral doping inhomogeneities in the diffusion front. However, the doping inhomogeneities are gradually smeared out as the impurities diffuse deeper into the substrate due to lateral as well as vertical diffusion.


2011 ◽  
Vol 687 ◽  
pp. 634-640 ◽  
Author(s):  
Wei Yan Wang ◽  
Jin Hua Huang ◽  
Xian Peng Zhang ◽  
Wei Jie Song ◽  
Rui Qin Tan

The effect of rapid thermal annealing (RTA) temperature (700~1200 °C) and time (1~8 min) on the structure and conductivity properties of polycrystalline silicon (Si) films on glass, grown by RTA crystallization of magnetron sputtering (MS) deposited amorphous Si (a-Si) films, was investigated by means of X-ray diffraction (XRD) and UV reflectance. It was observed the critical temperature for crystallizing a-Si films was ~750 °C and ~700 °C based on XRD and reflectance measurements, respectively. As soon as RTA temperature reached and exceeded the critical value, the structural property of polycrystalline Si films increased with RTA temperature or time. The above results were related to the thermal and photon effects induced by RTA. Moreover, it was revealed that the resistivity of polycrystalline Si films decreased with RTA temperature, however, even the resistivity of the polycrystalline Si films annealed at 1200 °C was 2 orders of magnitude higher than that of Si target, attributed to the carrier scattering by grain boundaries or defects. The polycrystalline Si films on glass fabricated by MS deposition combined with RTA crystallization may endow them with great application potentials in Si thin-film solar cells.


2008 ◽  
Vol 600-603 ◽  
pp. 623-626
Author(s):  
Thomas Kups ◽  
Katja Tonisch ◽  
M. Voelskow ◽  
Wolfgang Skorupa ◽  
Alexander Konkin ◽  
...  

Pseudomorphic 4H-(Si1-xC1-y)Gex+y solid solutions were formed by ion implantation at 600°C and rapid thermal annealing at implanted Ge concentrations below 10%. At higher implantation doses followed by annealing 3C-SiC inclusion and SiGe precipitates are formed. Transmission electron microscopy investigations accompanied with “atomic location by channeling enhanced microanalysis” of the annealed samples revealed an increasing incorporation of Ge on Si lattice sites.


Sign in / Sign up

Export Citation Format

Share Document