Microstructure, Mechanical Properties and Wear Resistance of Fe-Al Based Alloys with Various Alloying Elements

2004 ◽  
Vol 842 ◽  
Author(s):  
Han-Sol Kim ◽  
In-Dong Yeo ◽  
Tae-Yeub Ra ◽  
Won-Yong Kim

ABSTRACTWe report on microstructure, mechanical properties and wear resistance of Fe-Al based alloys with various alloying elements. The microstructures were examined using optical and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscope (EDS). Two types of alloys were prepared using vacuum arc melting; one is Fe-28Al based alloys (D03 structured) with and without alloying elements such as Mo and Zr. The other one is Fe-35Al based alloys (B2 structured) produced with same manner. For both types of alloys, equiaxed microstructures were observed by the addition of Mo, while dendritic structures were observed by the Zr addition. These microstructural features were more evinced with increasing the content of alloying elements. Concerning the mechanical properties and wear resistance, Fe-35Al based alloys with or without Mo addition superior to Fe-28Al based alloys especially in the high temperature region.

2017 ◽  
Vol 898 ◽  
pp. 638-642 ◽  
Author(s):  
Dong Xu Qiao ◽  
Hui Jiang ◽  
Xiao Xue Chang ◽  
Yi Ping Lu ◽  
Ting Ju Li

A series of refractory high-entropy alloys VTaTiMoAlx with x=0,0.2,0.6,1.0 were designed and produced by vacuum arc melting. The effect of added Al elements on the microstructure and mechanical properties of refractory high-entropy alloys were investigated. The X-ray diffraction results showed that all the high-entropy alloys consist of simple BCC solid solution. SEM indicated that the microstructure of VTaTiMoAlx changes from equiaxial dendritic-like structure to typical dendrite structure with the addition of Al element. The composition of different regions in the alloys are obtained by energy dispersive spectroscopy and shows that Ta, Mo elements are enriched in the dendrite areas, and Al, Ti, V are enriched in inter-dendrite areas. The yield strength and compress strain reach maximum (σ0.2=1221MPa, ε=9.91%) at x=0, and decrease with the addition of Al element at room temperature. Vickers hardness of the alloys improves as the Al addition.


Vacuum ◽  
2020 ◽  
Vol 175 ◽  
pp. 109248 ◽  
Author(s):  
X.J. Jiang ◽  
Y.Y. Zhang ◽  
N. Yang ◽  
S.Q. Wang ◽  
Q.X. Ran

2010 ◽  
Vol 297-301 ◽  
pp. 489-494 ◽  
Author(s):  
A. Etaati ◽  
Ali Shokuhfar ◽  
E. Omrani ◽  
P. Movahed ◽  
H. Bolvardi ◽  
...  

Over the last decades, numerous investigations have been conducted on Nitinol properties. However, the effects of alloying elements on Ni-rich NiTi alloys have been considered less. In this research, different effects of homogenization time and cooling rate on the behaviors of Ni-42.5wt%Ti-3wt%Cu alloy were evaluated. The mentioned alloy was fabricated by vacuum arc melting method. Three different homogenization times (half, one and two hours) and three cooling media (water, air and furnace) were selected. The microstructure and hardness were examined by means of optical and scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) analysis and hardness test, respectively. According to the microscopic investigations, no significant changes were observed after half an hour. However, results indicate that increasing time of homogenization leads to finer precipitations and a uniform distribution of them. The various cooling environments result in the formation of two types of precipitation phases. It was seen that in the high cooling rate, the majority of precipitations consisted of Ti2(Ni,Cu) while by decreasing cooling rate NiTiCu precipitates appeared too, which affect the hardness.


2012 ◽  
Vol 476-478 ◽  
pp. 329-333
Author(s):  
Zhi Ying Ma ◽  
Yi Tao Yang

The effect of Mo and Ni content on the mechanical properties of low carbon and alloy casting steel by using Vacuum Arc Melting Furnace had been studied in this paper. The results indicated that increasing Mo or Ni content would enhance the hardness and strength of the steel separately, with some of elongation loss. It showed that ferrite refined with the increasing alloy content. The combinations of Mo and Ni content were of importance for comprehensive mechanical properties and wear resistance. The appropriate content in low carbon casting steel with 0.02%Nb was 0.5%-0.6%Mo and 0.2%-0.4%Ni.


2014 ◽  
Vol 790-791 ◽  
pp. 503-508 ◽  
Author(s):  
Sumanta Samal ◽  
Sutanuka Mohanty ◽  
Ajit Kumar Misra ◽  
Krishanu Biswas ◽  
B. Govind

The present investigation reports mechanical properties of novel multicomponent TixCuyFe20Co20Ni20 high entropy alloys (HEAs) with different alloy chemistry (x/y = 1/3, 3/7, 3/5, 9/11, 1, 11/9 and 3/2). The alloy cylinders were prepared by vacuum arc melting-cum-suction casting route. The detailed electron microscopic observations reveal the presence of three different solid solution phases; FCC (a1) phase, FCC (a2) phase and BCC (b) phase for all the investigated alloys, whereas ultrafine eutectic between FCC (a1) phase, and Ti2 (Co, Ni) - type Laves phase has been observed for the HEAs with x/y = 9/11, 1, 11/9 and 3/2. Room temperature compression test of the suction cast cylinders with aspect ratio of 2/1 has been conducted to obtain mechanical properties of the HEAs. The optimum combination of strength (~ 1.88 GPa) and plasticity (~ 21 %) is obtained for x/y = 9/11; indicating simultaneous improvement of strength as well as plasticity of the novel HEAs. Fractographic analysis of the fractured surfaces reveals mixed mode of fracture for x/y = 1/3, 3/7 and 3/5, ductile mode for x/y = 9/11 and 1, whereas brittle mode of fracture for x/y = 11/9 and 3/2.


2013 ◽  
Vol 1516 ◽  
pp. 275-281 ◽  
Author(s):  
Varun Choda ◽  
Ayan Bhowmik ◽  
Ian M. Edmonds ◽  
C. Neil Jones ◽  
Howard J. Stone

ABSTRACTSix alloys based on Cr-10Ta-7Si (by at.%) with quaternary additions of 0.5Ag, 5Ti, 1Hf, 3Mo, 3Al, or 3Re (by at.%) substituted for Cr were produced by vacuum arc-melting. The microstructures of the alloys were found to predominantly consist of a eutectic mixture of an A2 Cr-based solid solution and a C14 Cr2Ta Laves phase along with proeutectic Cr2Ta dendrites. Microstructural macro- and micro-scale inhomogeneities were observed in all alloy ingots, which were attributed to the non-equilibrium arc-melting process. The measured lattice parameters of the constituent phases and the elemental partitioning behaviour between the phases have been correlated with the respective covalent atomic radii. The bulk hardnesses of the alloys, along with the hardness of individual phases, have also been reported.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1819
Author(s):  
Oleg N. Senkov ◽  
Stéphane Gorsse ◽  
Robert Wheeler ◽  
Eric J. Payton ◽  
Daniel B. Miracle

The microstructure, phase composition, and mechanical properties of NbTiZr, TaTiZr, Re0.3NbTiZr, and Re0.3TaTiZr are reported. The alloys were produced by vacuum arc melting and hot isostatically pressed (HIP’d) at 1400 °C for 3 h under 276 MPa hydrostatic pressure of high-purity argon prior to testing. NbTiZr had a single-phase BCC crystal structure, while TaTiZr had a Ti- and Zr-rich BCC matrix phase and Ta-rich nanometer-sized BCC precipitates, at volume fractions of 0.49 and 0.51, respectively. Re0.3NbTiZr consisted of a BCC matrix phase and Re-rich precipitates with a FCC crystal structure and the volume fraction of 0.14. The microstructure of Re0.3TaTiZr consisted of a Zr-rich BCC matrix phase and coarse, Re and Ta rich, BCC particles, which volume fraction was 0.47. NbTiZr and TaTiZr had a room temperature (RT) yield stress of 920 MPa and 1670 MPa, respectively. While, 10 at.% Re additions increased the RT yield stress to 1220 MPa in Re0.3NbTiZr and 1715 MPa in Re0.3TaTiZr. Re also considerably improved the RT ductility of TaTiZr, from about 2.5% to 10% of true strain. The positive strengthening effect from the Re additions was retained at high (800–1200 °C) temperatures.


2013 ◽  
Vol 32 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Huarui Zhang ◽  
Xiaoxia Tang ◽  
Qing Pan ◽  
Lei Zhou ◽  
Chungen Zhou ◽  
...  

AbstractDirectional solidification technique was successfully used to prepare highly reactive NiTiAl-based alloys using novel Y2O3-coated crucibles. Compared with the as-cast alloys fabricated by vacuum arc melting, the microstructure of the directionally solidified alloys was optimized and mechanical properties remarkably improved. After directional solidification, the microstructure of the alloys became much finer and preferentially grew along [001] orientation. The tensile strength and strain of the directionally solidified alloys at 1550°C were promoted to 1240 MPa and 2.1% respectively, which were 91.4% and 75% higher than that of the as-cast alloys. The strength increased up to 1328 MPa and 1419 MPa after homogenizing treating. The Y2O3-coated crucibles assured significant purification effect of the alloys. The maximum oxygen increase in the steady-state region of the ingot obtained at 1750°C was no more than 0.014 wt.%.


Sign in / Sign up

Export Citation Format

Share Document