Preparation of NiNb2O6 Columbite Ceramics by a Reaction-Sintering Process

2004 ◽  
Vol 848 ◽  
Author(s):  
Yi-Cheng Liou ◽  
Chao-Yang Shiue

ABSTRACTPreparation of NiNb2O6 columbite ceramics by a reaction-sintering process has been investigated. The mixture of raw materials was pressed and sintered into ceramics without any calcination stage involved. Columbite NiNb2O6 ceramics were obtained after being sintered at 1250–1450°C for 2 h and 4 h from mixture of Nb2O5 and 50%Ni(NO3)2-50%NiO (NN1). In pellets from mixture of Nb2O5 and NiO (NN2), columbite NiNb2O6 ceramics were obtained after being sintered at 1150–1350°C for 2 h and 4 h. A density of 4.47 g/cm3 was obtained in NN1 for 2 h sintering at 1400°C. For NN2, a higher density 5.62 g/cm3 (99.8% of the theoretical value) was obtained for 2 h sintering at 1300°C. The reaction-sintering process has proven to be a simple and effective method in preparing columbite NiNb2O6 ceramics. A higher density could be obtained at lower sintering temperature by using NiO instead of 50%Ni(NO3)2-50%NiO in the reaction with Nb2O5.

2004 ◽  
Vol 848 ◽  
Author(s):  
Yi-Cheng Liou ◽  
Jen-Hsien Chen ◽  
Chi-Ting Wu

ABSTRACTBarium strontium titanate (Ba0.7Sr0.3TiO3, BST) ceramics prepared by a reaction-sintering process were investigated. The mixture of raw materials of stoichiometric Ba0.7Sr0.3TiO3 was pressed and sintered into ceramics without any calcination stage involved. Perovskite BST ceramics were obtained after sintered at 1330–1370°C for 2–6 h. For 6 h soak time, a density value 5.68g/cm3 (99.8% of the theoretic value) was obtained at 1350°C sintering. Grains of sizes between 2μm and 15μm were formed after 1330–1370°C sintering for 2–6 h. A diffused ferroelectric-paraelectric transition was observed in pellets sintered at 1330°C for 2 h and disappeared at a longer soak time or a higher sintering temperature.


2011 ◽  
Vol 284-286 ◽  
pp. 201-204
Author(s):  
Rui Sheng Wang ◽  
Jun Hong Zhao ◽  
Heng Yong Wei ◽  
Shao Wei Yao

Al2TiO5-Si3N4 composites were prepared by reaction sintering process using Al2TiO5 and α-Si3N4 powders as raw materials. The effect ofsintering temperature, soaking time and Si3N4 content on the sintering properties of the composites was studied. The results showed that the best sintering temperature and soaking time were 1550 °C and 2 h, respectively. The samples with 15 wt% of Si3N4 addition had good sintering properties, and its mechanical strength was 28.96 MPa, which was 2 times of the one of the samples without Si3N4 addition.


2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


2018 ◽  
Vol 281 ◽  
pp. 224-229 ◽  
Author(s):  
Fang Wang ◽  
Ming Han Xu ◽  
Ai Xia Chen ◽  
Long Tao Liu ◽  
Zhi Hui Li ◽  
...  

YAG materials have a number of unique properties, the application is very extensive, the burn is due to the temperature is too high or the residence time at high temperatures is caused. The undercurrent is the sintering temperature is too low or the holding time is not enough, resulting in product performance is too low or too small shrinkage. In this paper, the effect of sintering temperature on properties of YAG porous ceramics was investigated. The results showed that the firing temperature of the ingredients will be different and cause the same sintering process and sintering additives content of different samples burned. The increase in the content of SiO2 in the furnish with the sintering aid tends to occur. the effect of temperature on the mechanical properties of the samples after sintering was significant, so the raw materials include 60wt%YAG, 10wt% CaO, 10wt% SiO2 and 20wt% soluble starch, the molding process in 20MPa pressure 10min, the sintering at 1500°C for 2h, the sample porosity is 42.2%, the compressive strength is 5.8MPa, the outside shape is keep intact and the better pore microstructure is shown.


2011 ◽  
Vol 287-290 ◽  
pp. 608-612
Author(s):  
Su Hua Lv ◽  
Shu Lang Guo ◽  
Hua Ji

SBT Ferroelectric Materials are prepared by solid reaction sintering process after doping V2O5to SBT bulk and its properties are researched. The results show that this method can decrease sintering temperature , change the grains from rod to plate shape, increase grains size and lead to the grains growth with c-axis. And there are ferroelectric 90b domains in SBTV crystal .


2018 ◽  
Vol 25 (5) ◽  
pp. 957-961 ◽  
Author(s):  
Kaiyue Wang ◽  
Huijun Wang ◽  
Yi Zhou ◽  
Guomin Li ◽  
Yaqiao Wu ◽  
...  

AbstractIn this study, the mullite-quartz-based proppants were successfully prepared by using the coal gangue as the raw materials. Then, the effects of the additive and the sintering temperature on the composition, microstructure, and properties of the proppants were investigated. Results showed that the proppants sintered at 1250°C with the 10 wt% bauxite additive presented the best performance, which was very close to that of the quartz-proppant, and met the operational requirements of the 52 MPa coal bed methane wells. The viscous flow mechanism of the liquid phase formed during the sintering process also promoted the arrangement of the grains, thus benefiting the densification and the strength of the proppants.


2021 ◽  
Vol 15 (1) ◽  
pp. 11-18
Author(s):  
Yaochen Si ◽  
Miao Xia ◽  
Hongxia Li ◽  
Honggang Sun ◽  
Ang Guo ◽  
...  

In order to develop chrome-free refractory materials applicable in coal slurry gasification, SiC-CaAl12O19 (SiC-CA6) composite refractories were developed and prepared by using SiC aggregates and CA6 powders as main raw materials. The sintering behaviour of the composites was investigated. After firing at different temperatures under CO atmosphere, the effects of oxidation of SiC aggregates on the sintering behaviour and microstructures of SiC-CA6 composite refractorieswere investigated. SiC-CA6 composites could not be sintered when firing temperature was lower than 1500?C. SiC had a passive oxidation and the oxidation components were able to react with CA6 to form CaAl2Si2O8. The CaAl2Si2O8 melted into liquid when sintering temperature was in the range of 1500-1600?C, which promoted the sintering process of the SiC-CA6 composites. At temperatures above 1600 ?C, an active oxidation of SiC occurred. Simultaneously, SiC could also reacted with the SiO2(s,l) to form SiO, leading to the precipitation of Al2O3 and CaO in the liquid to generate plate-like CA6. Above this temperature, the sintering of the SiC-CA6 composite refractories was affected by the growth of CA6 and oxidation of SiC. This work demonstrates that the optimal sintering temperature for the SiC-CA6 composite refractories was 1600?C.


2011 ◽  
Vol 236-238 ◽  
pp. 1523-1527 ◽  
Author(s):  
Xiao Meng Zhang ◽  
Shu Feng Ye ◽  
Li Hua Xu ◽  
Peng Qian ◽  
Lian Qi Wei ◽  
...  

The SiC/FexSiycomposites were synthesized by reaction sintering process with iron tailings as raw material and carbon as reductant. The room and high temperature flexural strengths and fracture toughness of composites were studied in this paper. Fracture surfaces were observed by means of a scanning electron microscope (SEM). The results showed that the room temperature flexural strength of SiC/FexSiycomposites changed along with the different contents of FexSiyand sintering temperature. The flexural strength of composites reaches the maximum at 900°C. The correlation between flexural strength and temperature is consistent with curveⅠ.The fracture toughness of composites is related to the content of FexSiy. The fracture behavior of composites is mainly transcrystalline in room temperature and intercrystalline in high temperature.


2020 ◽  
Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

Abstract BN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of sintering temperature on the microstructural evolution, bulk density, apparent porosity, and mechanical properties of h-BN composite ceramics were investigated. The results indicated that La-Al-Si-O liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had the significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN/La-Al-Si-O composite ceramics were obtained under sintering temperature of 1700 °C, and the elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa and 3.25 MPa·m1/2, respectively.


2010 ◽  
Vol 150-151 ◽  
pp. 1068-1072
Author(s):  
Min Yue ◽  
Qin Yan Yue ◽  
Yuan Feng Qi

The object of this study is to investigate the sintering mechanism of lightweight ceramic by different sintering temperature. The raw materials were sewage sludge and fly-ash, and clay was added as cementing agents (by ratio of 50wt% in each sample). The raw materials were mixed and pressed into raw pellets. After drying and preheating treatment, the raw pellets were sintered at temperatures ranging from 1050 to 1150 , in 25 increments for 10min. The physical properties (bulk density, grain density, water absorption and rate of expansion) were the indexes used to determine the technical parameters for the preparation of lightweight ceramic pellets and investigate the sintering mechanism of bloating. The results suggested that temperature was the key control factor of sintering process, and 1150 was the starting point of bloating reaction. Observation of the microstructure by SEM indicated that a higher flux content in the raw materials could lower the melt point during sintering process.


Sign in / Sign up

Export Citation Format

Share Document