Morphological Changes while Growing Nickel Monosilicide Nanowires

2004 ◽  
Vol 854 ◽  
Author(s):  
Joondong Kim ◽  
Wayne A. Anderson ◽  
Elena A. Guliants ◽  
Christopher E. Bunker

ABSTRACTNickel monosilicide (NiSi) nanowires (NWs) have been fabricated in a DC magnetron system by the Metal Induced Growth (MIG) method. The NW growing stages were sequentially observed by scanning electron microscopy. Deposited Ni on SiO2 coated Si wafers has been first grooved and agglomerated by thermal heating at 575 °C. In the sputtering procedure, Ni as a catalyst reacted with sputtered Si forming clusters. Nanowires were grown in the same directions on each cluster. Raman spectroscopy and Energy Dispersive Spectroscopy indicated the NW composition as NiSi. The linear propagating property of NWs was used to form self-assembled nanobridges (NBs) in trenched Si wafers. The affinity of NWs can be used on various substrate materials with less thermal damage. NiSi composed MIG-NBs are promising candidates as nanoscale contacts due to the features of low resistivity and low temperature processing giving less potential damage on fabricated structures.

Author(s):  
Mona Alyobi ◽  
Chris Barnett ◽  
Richard Cobley

Abstract— An Omicron low temperature multi-probe technique is used for manipulation of mechanically exfoliated suspended and attached graphene sheets on SiO2 substrates. Scanning electron microscopy (SEM) and Raman spectroscopy are used to detect the graphene sheets and determine their thicknesses and quality, respectively. The interaction of the etched tungsten tip with the graphene is used to lift and release the sheet and induce artificial ripples. Both suspended and attached sheets onto the substrates show different behaviour in response to bias voltage. IndexTerms: graphene,multi-probe microscopy, ripples.  


Author(s):  
T. Inoué ◽  
H. Koike

Low temperature scanning electron microscopy (LTSEM) is useful to avoid artifacts such as deformation and extraction, because specimens are not subjected to chemical fixation, dehydration and critical-point drying. Since Echlin et al developed a LTSEM, many techniques and instruments have been reported for observing frozen materials. However, intracellular structures such as mitochondria and endoplasmic reticulum have been unobservable by the method because of the low resolving power and inadequate specimen preparation methods. Recently, we developed a low temperature SEM that attained high resolutions. In this study, we introduce highly magnified images obtained by the newly developed LTSEM, especially intracellular structures which have been rapidly frozen without chemical fixation.[Specimen preparations] Mouse pancreas and brown adipose tissues (BAT) were used as materials. After the tissues were removed and cut into small pieces, the specimen was placed on a cryo-tip and rapidly frozen in liquid propane using a rapid freezing apparatus (Eiko Engineering Co. Ltd., Japan). After the tips were mounted on the specimen stage of a precooled cryo-holder, the surface of the specimen was manually fractured by a razor blade in liquid nitrogen. The cryo-holder was then inserted into the specimen chamber of the SEM (ISI DS-130), and specimens were observed at the accelerating voltages of 5-8 kV. At first the surface was slightly covered with frost, but intracellular structures were gradually revealed as the frost began to sublimate. Gold was then coated on the specimen surface while tilting the holder at 45-90°. The holder was connected to a liquid nitrogen reservoir by means of a copper braid to maintain low temperature.


Author(s):  
Alan Beckett

Low temperature scanning electron microscopy (LTSEM) has been evaluated with special reference to its application to the study of morphology and development in microorganisms. A number of criteria have been considered and have proved valuable in assessing the standard of results achieved. To further aid our understanding of these results, it has been necessary to compare those obtained by LTSEM with those from more conventional preparatory procedures such as 1) chemical fixation, dehydration and critical point-drying; 2) freeze-drying with or without chemical vapour fixation before hand.The criteria used for assessing LTSEM for the above purposes are as follows: 1)Specimen immobilization and stabilization2)General preservation of external morphology3)General preservation of internal morphology4)Exposure to solvents5)Overall dimensional changes6)Cell surface texture7)Differential conformational changes8)Etching frozen-hydrated material9)Beam damage10)Specimen resolution11)Specimen life


2014 ◽  
Vol 10 ◽  
pp. 1613-1619 ◽  
Author(s):  
Simon Rondeau-Gagné ◽  
Jules Roméo Néabo ◽  
Maxime Daigle ◽  
Katy Cantin ◽  
Jean-François Morin

The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM).


2014 ◽  
Vol 20 (5) ◽  
pp. 1534-1543 ◽  
Author(s):  
Annalaura Restivo ◽  
Ilaria Degano ◽  
Erika Ribechini ◽  
Josefina Pérez-Arantegui ◽  
Maria Perla Colombini

Abstract:An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions.FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis.FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.


Sign in / Sign up

Export Citation Format

Share Document