High Strength Low Dielectric Constant Aromatic Thermosets

2005 ◽  
Vol 863 ◽  
Author(s):  
Yongqing Huang ◽  
James Economy

AbstractContinuing miniaturization of microelectronic devices requires development of low dielectric constant materials to lower the RC delay, power dissipation and crosstalk noise. Although spin-on polymer dielectrics usually have better potential for extendibility to lower dielectric constant (k) values compared to chemical-vapor-deposited dielectrics, their low mechanical properties prevent them from being successfully integrated with copper metal lines.Recent evaluation of a new thermosetting oligomer shows high thermal stability, low moisture pick-up and low dielectric constant. Techniques to optimize the solubility and spin coating characteristics of the oligomer have been developed. The thermally cured polymer displayed a thermal stability up to 480°C in nitrogen and 400°C in air. The cured polymer displayed a dielectric constant of 2.7 at 1 MHz and a breakdown strength larger than 230 V/μm. Nanoindentation testing showed that it had an extraordinarily high Young's modulus of 16.8 GPa and a hardness of 3.5 GPa. By use of porogens, a dielectric constant as low as 1.85 was obtained while still maintaining an acceptable high Young's modulus of 7.7 GPa and hardness of 2.0 GPa. Nanoscratch testing indicated that this material had good adhesion to the Si substrate, and Ta which is a diffusion barrier for copper. These results appear unique compared to all commercially available low-k candidates.

2006 ◽  
Vol 100 (12) ◽  
pp. 123512 ◽  
Author(s):  
Syozo Takada ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
Nobutoshi Fujii ◽  
Takamaro Kikkawa

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 55-58 ◽  
Author(s):  
Kazuhiko Endo

Low-k organic polymers such as polytetrafluoroethylene (PTFE) are promising materials for use as interlayer dielectrics (ILD) because their dielectric constants are generally lower than those of inorganic materials. However poor adhesion with Si substrates, poor thermal stability, and production difficulties have hindered their use in microelectronics.On the other hand, plasma-enhanced chemical vapor deposition (PECVD) of polymer films (plasma polymerization) has many advantages that help to overcome these problems. Plasma-enhanced chemical vapor deposition uses a glow discharge to create activated species such as radicals and ions from the original monomer, and the polymer films are deposited through various gas-phase and surface reactions of these active species, including ablation of the deposited film. No water is generated during plasma polymerization, and the influence of a solvent can be ignored. Also a layered structure that promotes adhesion can be easily fabricated by changing the source compounds.Recently the use of fluorinated amorphous carbon thin films (a-C:F) as new low-dielectric-constant interlayer dielectrics has been proposed. These thin films have an amorphous C–C cross-linked structure (including sp3 and sp2 bonded carbon) and have the same C–F bonds found in PTFE. The strong C–F bonds decrease the dielectric constant, and the C–C crosslinked structure maintains the film's thermal stability. The a-C:F film can be deposited from fluorocarbon source materials using PECVD. Typically fluorocarbons such as CF4, C2F6, C4F8, and their hydrogen mixtures are used as source materials. First the a-C:F films for low-k ILD, with a dielectric constant of 2.1, were deposited from CH4 + CF4 mixtures by using parallel-plate PECVD.


Author(s):  
I. S. Ovchinnikov

This review introduces the study of state-of-art methods for assessing the mechanical properties of insulating materials with low dielectric constant. The main features of measuring Young’s modulus of thin films insulating materials with low dielectric constant are determined by usage of Brillouin light scattering, surface acoustic wave spectroscopy, picosecond laser-acoustic method, ellipsometric porosimetry, nanoindentation and atomic force microscopy in various modes. The author estimated the optimum lateral and optimum depth resolution for each above method. The review analyzes the degree of sample preparation complexity for the measurements by these methods and describes what methods of measurement are destructive for the samples. Besides, the review makes a comparison for the results of evaluating Young’s modulus of insulating materials with low dielectric constant achieved by different methods. Comparative analysis of the methods for assessing mechanical properties lead us to the conclusion that the method of atomic force microscopy is superior to other methods described above, both in lateral (8 nm) and optimum depth (10 nm) resolution. It is shown that due to the small impact force of the atomic force microscope probe on the surface, the method does not have a destructive effect on the sample. In addition, there is no need to create special conditions for the experiment (e.g., the cleanliness level of the premises, the possibility of an experiment under environmental conditions, etc.). This makes the experiment relatively simple in terms of preparing the object of research. It has been also established that the method of atomic force microscopy in the mode of quantitative nanomechanical mapping allows forming a map of the distribution of the Young’s modulus of the insulating material as part of the metallization system of integrated circuits.


2014 ◽  
Vol 120 ◽  
pp. 225-229 ◽  
Author(s):  
Patrick Verdonck ◽  
Cong Wang ◽  
Quoc Toan Le ◽  
Laurent Souriau ◽  
Kris Vanstreels ◽  
...  

2004 ◽  
Vol 151 (6) ◽  
pp. F146 ◽  
Author(s):  
Shou-Yi Chang ◽  
Tzu-Jen Chou ◽  
Yung-Cheng Lu ◽  
Syun-Ming Jang ◽  
Su-Jien Lin ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 828-831 ◽  
Author(s):  
Wei Dong ◽  
Chang An Wang ◽  
Lei Yu ◽  
Shi Xi Ouyang

Porous Si3N4/SiO2/BN composite ceramics with high strength and low dielectric constant were prepared by dry-pressing process and pressureless sintering at 1750°C for 1.5 h in flow nitrogen. The influences of BN content on microstructure, porosity, mechanical and dielectric properties of the porous Si3N4/SiO2/BN composite ceramics were discussed. The results showed that the porous Si3N4/SiO2/BN composite ceramics with porosity ranging from 29% to 48% were fabricated by adjusting the content of BN. The flexural strength of the porous Si3N4/SiO2/BN composite ceramics was 78215 MPa. The dielectric constant of the porous Si3N4/SiO2/BN composite ceramics was 3.9~5 at 1 MHz.


2000 ◽  
Vol 612 ◽  
Author(s):  
Sang-Soo Han ◽  
Byeong-Soo Bae

AbstractFluorinated amorphous carbon (a-C:F) thin films were deposited by inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with increasing CF4:CH4 gas flow rate ratio, and then annealed with increasing annealing temperature (100, 200, 300, and 400.). We have found the reduction mechanism of the dielectric constant and the thermally stable condition for the a-C:F films. On the basis of the results, the optimal condition to satisfy both the low dielectric constant and the thermal stability is followed as; the a-C:F films have to have the compatible F content to make a compromise between the two properties; the C-Fx bonding configuration has to exist as a form of C-F2 & C-F3 instead of C-F; The films should be somewhat cross-linked structure.


Sign in / Sign up

Export Citation Format

Share Document