Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy

2005 ◽  
Vol 864 ◽  
Author(s):  
P. K. Giri ◽  
R. Kesavamoorthy ◽  
B. K. Panigrahi ◽  
K.G.M. Nair

AbstractGe nanocrystals (NCs) of diameter 4–13 nm are grown embedded in a thermally grown SiO2 layer by Ge ion implantation and subsequent annealing. Steady state and time-resolved photoluminescence (PL) studies are performed on these embedded Ge nanocrystals to understand the origin of the PL emission at room temperature. Steady state PL spectra show a broad peak consisting of a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the Ge/SiO2 interface. Time-resolved PL studies reveal double exponential decay dynamics of the PL emission on the nanoseconds time scale. The faster component of the decay with large amplitude and having a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. These results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.

2003 ◽  
Vol 135-136 ◽  
pp. 387-388 ◽  
Author(s):  
A. Charas ◽  
J. Morgado ◽  
L. Alcácer ◽  
J.M.G. Martinho ◽  
F. Cacialli

2007 ◽  
Vol 17 (01) ◽  
pp. 179-188 ◽  
Author(s):  
MICHAEL WRABACK ◽  
GREGORY A. GARRETT ◽  
ANAND V. SAMPATH ◽  
PAUL H. SHEN

Time-resolved photoluminescence studies of nitride semiconductors and ultraviolet light emitters comprised of these materials are performed as a function of pump intensity as a means of understanding and evaluating device performance. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Similar behavior is observed in optically pumped UV lasers. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.


2020 ◽  
Vol 49 (24) ◽  
pp. 8096-8106 ◽  
Author(s):  
Simon Cerfontaine ◽  
Ludovic Troian-Gautier ◽  
Sara A. M. Wehlin ◽  
Frédérique Loiseau ◽  
Emilie Cauët ◽  
...  

A detailed photophysical study of binuclear complexes was performed using steady-state and time-resolved photoluminescence measurements at variable temperature. The results were compared with the prototypical [Ru(bpy)3]2+.


2015 ◽  
Vol 167 ◽  
pp. 333-338 ◽  
Author(s):  
Nikolaos Droseros ◽  
Kostas Seintis ◽  
Mihalis Fakis ◽  
Spiros Gardelis ◽  
Androula G. Nassiopoulou

1990 ◽  
Vol 192 ◽  
Author(s):  
David Redfield ◽  
Richard H. Bube

ABSTRACTThe existence of saturation (or steady state) in the density of light-induced defects in amorphous Si:H is shown to have major importance for the interpretation of the nature and origin of these defects. First, a number of characteristics of the steady-state and transient responses to light and temperature are described and contrasted. These lead to the conclusion that the saturation value is the only useful criterion of the number of defects in these materials. We then describe a new atomic model for defects, unifying both dopant-induced and light-induced defects. This model invokes foreign atoms in defects, and saturation reflects the limitation imposed by the numbers of such atoms. Many other observed properties of defects are explained by this model.


1997 ◽  
Vol 482 ◽  
Author(s):  
P. Lefebvre ◽  
J. Allègre ◽  
B. Gil ◽  
A. Kavokine ◽  
H. Mathieu ◽  
...  

AbstractThe recombination dynamics of excitons in GaN / Ga0.93Al0.07N multiple quantum wells is studied versus lattice temperature. The average decay time of photoluminescence measured at 8K is of ∼330 ps, with a substantial variation of times within the emission line. This is interpreted in terms of carrier localization due to alloy disorder and to well width and depth variations. The radiative lifetime τr of excitons in the wells is found to increase linearly with temperature, with ∂τr / ∂T = 20.5 ± 0.7 ps.K−1. The radiative lifetime of free excitons in the low-temperature limit is deduced to be 2.4 ps, consistent with a longitudinal-transverse splitting ћωLT in GaN of 0.6 meV, in excellent agreement with recent estimations. The ratio of the lifetimes of localized and free excitons is found coherent with the picture of electrons and holes independently localized on short-range defects, instead of excitons localized as a whole on long-range potential fluctuations.


Author(s):  
Bao Liu ◽  
Meng Tian ◽  
Yang Gao ◽  
Pengyu Zhou ◽  
Kailin Chi ◽  
...  

The pressure-dependent photoluminescence kinetics of CsPbBr3:Ce quantum dots was investigated by steady-state and time-resolved photoluminescence spectroscopy. Here, we propose a novel strategy to improve the persistent luminescence of CsPbBr3 quantum...


1992 ◽  
Vol 258 ◽  
Author(s):  
N.W. Wang ◽  
P.A. Morin ◽  
V. Chu ◽  
S. Wagner

ABSTRACTIt is a question as yet unresolved whether the density of light-induced defects in a-Si:H reaches a saturated value that cannot fundamentally be exceeded, or whether the defect density is in all conditions a steady-state value that reflects carrier concentration and temperature. In our experiments on a-Si:H we have observed defect saturation at low temperature and high light intensity; on the other hand, data exhibiting no saturation have also been published. To learn more about this question we have carried out saturation experiments on a-SiGe:H(F) alloys. These alloys have lower defect freeze-in temperatures than a-Si:H and, presumably, lower annealing energies. Therefore, saturation should be more difficult to achieve in the alloys than in a-Si:H.We have studied saturation for a-SiGe:H(F) samples to temperatures above the onset of thermal annealing and have observed that its behavior is similar to that seen in a-Si:H.


Sign in / Sign up

Export Citation Format

Share Document