Spectroscopic Ellipsometry of the Optical Functions of Some Widely Used Organic Light Emitting Diodes (OLEDs) Materials.

2005 ◽  
Vol 871 ◽  
Author(s):  
Z. T. Liu ◽  
C. C. Oey ◽  
A. B. Djuriši ◽  
C. Y. Kwong ◽  
C. H. Cheung ◽  
...  

AbstractIn this work, optical functions of some widely used OLEDs materials 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), tris (8-hydroxyquinoline) aluminum (Alq3), (N,N′-di(naphthalene-1-yl)-N,N′- diphenylbenzidine (NPB),poly(3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) and indium tin oxide (ITO)) were studied using spectroscopic ellipsometry (SE) in the spectral range from 1.55 eV to 4.1 eV (wavelength range of 300 nm to 800 nm). The samples were prepared either by thermal evaporation in high vacuum or spin-coating of thin films onto glass substrates. For determination of the optical functions of ITO, commercial ITO glass was used. Measurements at different incident angles were performed to determine whether the samples can be considered isotropic. The SE data were modeled using an oscillator model (Lorentz for semiconducting and Lorentz-Drude for conducting materials). The absorption spectra were also measured, and the comparison with the data determined by SE is given.

2001 ◽  
Vol 16 (12) ◽  
pp. 3554-3559 ◽  
Author(s):  
J. García-Serrano ◽  
N. Koshizaki ◽  
T. Sasaki ◽  
G. Martínez-Montes ◽  
U. Pal

The optical constants of Si/ZnO composite films grown on quartz glass substrates were determined in the spectral range 1.5–5.0 eV by spectroscopic ellipsometry using a rotating-analyzer ellipsometer. The structure of the samples was modeled by a two-phase (substrate–film) model, and the optical functions of the film were parameterized through different effective medium approximations. The results allowed us to estimate the microstructural film parameters, such as film thickness, the volume fractions of each of the constituents, and optical constants.


2007 ◽  
Vol 124-126 ◽  
pp. 439-442 ◽  
Author(s):  
Jae Hyouk Yoo ◽  
Su Cheol Gong ◽  
In Jae Baek ◽  
Hyun Seong Lim ◽  
Sang Baie Shin ◽  
...  

Polymer light emitting diodes (PLEDs) with ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al structure were prepared by spin coating method on the plasma-treated ITO(indium tin oxide)/glass substrates. PVK(N-vinylcabozole) and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as hole injection and transport materials. As blue light emitting material, PFO-poss(poly(9,9-dioctylfluorence) polymer was used. The dependence of the plasma treatment of ITO films on the optical and electrical properties of the PLEDs was investigated. The sheet resistance of ITO films increased slightly with increasing the plasma intensity from 20W to 300W in RF power. In contrast, the surface roughness was improved as the plasma intensity increased. The maximum current density and luminance were about 20 mA/cm2 and 250 cd/m2 at 9 V for the PLED sample coated on ITO/glass substrate with plasma treatment of 100W for 30s under 40 mtorr O2 pressure. The maximum emission spectrum of the PLEDs was 441 nm showing blue color.


2013 ◽  
Vol 537 ◽  
pp. 161-164
Author(s):  
Xue Jiao Li ◽  
Cheng Zhang ◽  
Na Zhang

PZO (PbZrO3) coatings with different thicknesses were deposited onto Indium Tin Oxide ITO glass substrates at room temperature by magnetron sputtering technique. UV-Vis absorption spectra method and microhardness testing method were used to measure the thickness of coating. It was proved that the measuring results of film thickness by two kinds of methods were equivalent, and either one method can be alternatively used to determine the thickness of deposited films.


2006 ◽  
Vol 321-323 ◽  
pp. 1699-1703 ◽  
Author(s):  
Jae Hyouk Yoo ◽  
Ho Jung Chang ◽  
Su Cheol Gong ◽  
In Jae Baek ◽  
Hyun Seong Lim ◽  
...  

Polymer light emitting diodes (PLEDs) with ITO/PEDOT:PSS/MEH-PPV/LiF/Al structures were prepared by spin coating method on the patterned ITO(indium tin oxide)/glass substrates. MEH-PPV [Poly(2-methoxy-5(2-ethylhexoxy)-1,4-phenylenevinyle)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the light emitting and hole transport materials. The dependence of the plasma treatment of ITO anode films on the optical and electrical properties of the PLEDs was investigated. The sheet resistances increased with increasing the plasma intensities from 40W to 300W in RF power. In contrast, the surface roughness was improved as the plasma intensity increased. The maximum current density and luminance were found to be about 97.5 mA/ and 55 cd/m2 at 8 V for the PLED sample coated on ITO/glass substrate with plasma treatment of 100W for 30s under 40 mtorr O2 pressure.


2012 ◽  
Vol 1511 ◽  
Author(s):  
Ippei Ishikawa ◽  
Keisuke Sakurai ◽  
Shuji Kiyohara ◽  
Taisuke Okuno ◽  
Hideto Tanoue ◽  
...  

ABSTRACTThe microfabrication technologiesfor organic light-emitting devices (OLEDs) are essential to the fabrication of the next generation of light-emitting devices. The micro-OLEDs fabricated by room-temperature curing nanoimprint lithography (RTC-NIL) using diamond molds have been investigated. However, light emissions from 10 μm-square-dot OLEDs fabricated by the RTC-NIL method have not been uniform. Therefore, we proposed the fabrication of micro-OLEDs by room-temperature curing nanocontact-print lithography (RTC-NCL) using the diamond-like carbon (DLC) mold. The DLC molds used in RTC-NCL were fabricated by an electron cyclotron resonance (ECR) oxygen ion shower with polysiloxane oxide mask in electron beam (EB) lithography technology. The mold patterns are square and rectangle dots which has 10 µm-width, 10 µm-width and50 µm-length, respectively. The height of the patterns is 500 nm. The DLC molds were used to form the insulating layer of polysiloxane in RTC-NCL. We carried out the RTC-NCL process using the DLC mold under the following optimum conditions: 0.1 MPa-pressure for coating DLC mold with polysiloxane film, 2.1 MPa-pressure for transferring polysiloxane from DLC mold pattern to indium tin oxide (ITO) glass substrate. We deposited N, N'-Diphenyl -N, N'-di (m-tolyl)benzidine (TPD) [40 nm-thickness] as hole transport layer / Tris(8-quinolinolato)aluminum (Alq3) [40 nm-thickness] as electron transport layer / Al [200 nm-thickness] as cathode on ITO glass substrateas anode in this order. We succeeded in formation of the insulating layer with square and rectangle dots which has 10 µm-width,10 µm-width and 50 µm-length, and operation of micro-OLEDs by RTC-NIL using DLC molds.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


2021 ◽  
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
A Moutcine

Abstract Recently, the rise of two dimensional amorphous nanostructured thin films have ignited a big interest because of their intriguingly isotropic structural and physical properties leading to potential applications in the nano-optoelectronics. However, according to literature, most of optoelectronic properties are investigated on chalcogenides related heterostructures. This has motivated the present work aiming to provide a new platform for the fabrication, examination of the properties and the applications of 2D nanostructured thin films based on epoxy/silicone blend. Thin films of Epoxy/Silicone loaded with nitrogen doped carbon nanotubes (N-CNTs) were prepared by sol-gel method and deposited on Indium Tin Oxide (ITO) glass substrates at room temperature. Further examination of optical properties aimed the investigation of optical pseudo-gap and Urbach energy and enabled the determination of processed films thickness based on Manifacier and Swanepol method. The results indicated that the unloaded thin films have a direct optical transition with a value of 3.61 eV followed by noticeable shift towards narrowing gaps depending on the loading rate. Urbach's energy is 0.19 eV for the unloaded thin films, and varies from 0.43 to 1.33 eV for the loaded thin films with increasing the rate of N-CNTs. It is inversely variable with the optical pseudo-gap. Finally, Epoxy/Silicone loaded with N-CNTs nanocomposites films can be developed as active layers with specific optical characteristics, giving the possibility to be used in electro-optical applications.


2013 ◽  
Vol 1530 ◽  
Author(s):  
Neha Batra ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTZinc oxide (ZnO) thin film deposited onto indium tin oxide (ITO) coated Corning glass substrates using pulsed laser deposition (PLD) technique has been used as a matrix for realization of an efficient urea biosensor after immobilization of urease (Urs) enzyme onto the surface of ZnO. The bioelectrode (Urs/ZnO/ITO/glass) is found to be exhibiting an enhanced sensitivity of 22μΑmΜ−1cm−2 towards urea over a wide detection range of 5-200 mg/dl. The relatively low value of Michaelis menten constant (Km= 0.94mM) indicates high affinity of the immobilized urease towards the analyte (urea). The prepared biosensor retains 90% of its activity for more than 10 weeks. The observed enhanced response characteristics of bioelectrode are attributed to the growth of the matrix (highly c-axis oriented ZnO thin film) with desired surface morphology and high electron communication feature. The results confirm the promising application of PLD grown ZnO thin film as an efficient matrix for urea detection.


2009 ◽  
Vol 1154 ◽  
Author(s):  
Kai Shum ◽  
Zhuo Chen ◽  
Chenming Xue ◽  
Shi Jin

AbstractHow to accurately determine carrier mobility and density in organic semiconducting materials is a very important subject for their optoelectronic applications including light-emitting diodes, solar cells, and thin film field-effect transistors. In this work, we report on a unique data analysis procedure for space-charge limited currents to simultaneously obtain the carrier density and mobility in semiconducting organic-materials. This procedure has been used for a few newly synthesized perylene tetracarboxylic diimide (PDI) derivatives with tunable π-stack structures without altering the electronic characteristic of individual molecules. How π-stack structural variation and residual carrier density affect electron transport performance will be discussed.


Sign in / Sign up

Export Citation Format

Share Document