Kinetic analysis and correlation with residual stress of the Ni/Si system in thin film

2005 ◽  
Vol 875 ◽  
Author(s):  
F. Cacho ◽  
D. Aime ◽  
F. Wacquant ◽  
B. Froment ◽  
C. Rivero ◽  
...  

AbstractReactive diffusion of the Ni/Si system has been studied by annealing nickel thin film on (100) silicon crystal. The measurement of the NiSi sheet resistance as a function of the annealing temperature and the type of annealing (Rapid Thermal Annealing and spike one) has been investigated. A kinetic model based on multiphase diffusion has been developed that fits experimental sheet resistance data. Residual stress in the thin film, measured by a curvature measurement technique, is correlated with the nature of the phases in the film. Finally the viscoplastic mechanical behavior of the Ni2Si and NiSi phases is analyzed in the case of low and fast thermal ramps.

2004 ◽  
Vol 18 (1) ◽  
Author(s):  
Young Tae Im ◽  
Seung Tae Choi ◽  
Tae Sang Park ◽  
Jae Hyun Kim

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Cui Yan ◽  
Yao Minglei ◽  
Zhang Qunying ◽  
Chen Xiaolong ◽  
Chu Jinkui ◽  
...  

Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47)O3(PZT) thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


Sign in / Sign up

Export Citation Format

Share Document