Characterization of Ultrathin Cosi2 on Si(111) Layers.

1987 ◽  
Vol 91 ◽  
Author(s):  
J.L. Batstone ◽  
Julia M. Phillips ◽  
J.M. Gibson

ABSTRACTUltrathin epitaxial CoSi2 films on Si(111) have been grown in ultrahigh vacuum by room temperature deposition of Co on Si(111) followed by a high temperature anneal at ~600°C. Characterization of the thin films with transmission electron microscopy has revealed pseudomorphic growth up to thicknesses ~30Å. Pinholes present in the pseudomorphic thin films are thought to prevent the trapping of dislocations within the film. A clear transition to films containing a regular network of misfit dislocations occurs at ~40Å. Evidence for the growth of CoSi2 via intermediate metal-rich silicide phases is observed.

1990 ◽  
Vol 198 ◽  
Author(s):  
F.H. Kaatz ◽  
J. Van der Spiegel ◽  
W.R. Graham

ABSTRACTThe epitaxial structure of ErSi2−x on Si(1 11) has been investigated using Rutherford backscattering (RBS) and transmission electron microscopy (TEM). Films 10 nm. thick show channeling minimum yields of 4% after room temperature deposition and annealing to 800°C. Plan view electron microscopy on ultrathin layers 0.5 nm. to 10 nm. thick reveals the formation of a complex microstructure involving vacancy ordering in these films. This superlattice structure is interpreted by considering domain formation and twinning in the heteroepitaxial ErSi2−x.


2021 ◽  
Author(s):  
Md. Farhan Naseh ◽  
Neelam Singh ◽  
Jamilur R. Ansari ◽  
Ashavani Kumar ◽  
Tapan Sarkar ◽  
...  

Abstract Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 ppb to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).


2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


2003 ◽  
Vol 779 ◽  
Author(s):  
Hyung Seok Kim ◽  
Sang Ho Oh ◽  
Ju Hyung Suh ◽  
Chan Gyung Park

AbstractMechanisms of misfit strain relaxation in epitaxially grown Bi4-xLaxTi3O12 (BLT) thin films deposited on SrTiO3 (STO) and LaAlO3 (LAO) substrates have been investigated by means of transmission electron microscopy (TEM). The misfit strain of 20 nm thick BLT films grown on STO substrate was relaxed by forming misfit dislocations at the interface. However, cracks were observed in 100 nm thick BLT films grown on the same STO. It was confirmed that cracks were formed because of high misfit strain accumulated with increasing the thickness of BLT, that was not sufficiently relaxed by misfit dislocations. In the case of the BLT film grown on LAO substrate, the magnitude of lattice misfit between BLT and LAO was very small (~1/10) in comparison with the case of the BLT grown on STO. The relatively small misfit strain formed in layered structure of the BLT films on LAO, therefore, was easily relaxed by distorting the film, rather than forming misfit dislocations or cracks, resulting in misorientation regions in the BLT film.


2013 ◽  
Vol 743-744 ◽  
pp. 910-914
Author(s):  
Ting Han ◽  
Geng Rong Chang ◽  
Yun Jin Sun ◽  
Fei Ma ◽  
Ke Wei Xu

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.


1990 ◽  
Vol 5 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
S. J. Golden ◽  
H. Isotalo ◽  
M. Lanham ◽  
J. Mayer ◽  
F. F. Lange ◽  
...  

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.


2009 ◽  
Vol 65 (6) ◽  
pp. 694-698 ◽  
Author(s):  
Y. Han ◽  
I. M. Reaney ◽  
D. S. Tinberg ◽  
S. Trolier-McKinstry

SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the 〈100〉p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a − a − c + Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in 〈110〉p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections.


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2013 ◽  
Vol 114 (3) ◽  
pp. 033530 ◽  
Author(s):  
A. Kovács ◽  
B. Schaffer ◽  
M. S. Moreno ◽  
J. R. Jinschek ◽  
A. J. Craven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document