The geological research in France - The Dosssier 2005 Argile

2006 ◽  
Vol 985 ◽  
Author(s):  
Frederic Plas ◽  
Jacques WENDLING

AbstractAt the end of fifteen years of researchs defined by the French act of December 30, 1991 on radwaste management, Andra gave a report, “Dossier Argile 2005”, which concluded with the feasibility of a reversible disposal in the argillaceous Callovo-Oxfordien formation studied by means of an underground research laboratory at Meuse/Haute-Marne site. Starting from source data like the characteristics of the geological medium and the waste inventory, the process followed by Andra to achieve at this conclusion is of type sequential and iterative between concept design, scientific knowledge, in particular that of the phenomenological evolution of the reposiroty and its geological environment from operating period to long term, and Safety assessment. The “Dossier Argile 2005” covers a broad radwaste inventory, ILLW, HLW and Spent Fuel, so that it makes it possible to cover whole of the technological, scientific and safety topics. This article will give an overview of the geological disposal studies in France and draw the main conclusion of the Dossier 2005 Argile. It will be focused on the near field (Engineering components and near field host rock), while considering if necessary its integration within the whole system. After a short description of the concepts (incl. waste inventory and the characteristics of the Meuse/Haute the Marne site) and the functions of the components of repository and geological medium, one will describe successively the broad outline of the phenomenological evolution of repository and the geological medium in near field, by in particular releasing the time scales of processes and uncertainties of knowledge. On this basis, one will indicate the safety scenarios which were considered and the broad outline of performance and dose calculations. Lessons learn from the Dossier 2005 Argile will be discussed and perspective and priority for future will be indicated.

2006 ◽  
Vol 932 ◽  
Author(s):  
Andreas Loida ◽  
Manfred Kelm ◽  
Bernhard Kienzler ◽  
Horst Geckeis ◽  
Andreas Bauer

ABSTRACTThe long-term immobilization for individual radioelements released from the waste form “spent fuel” in solid phases upon groundwater contact depends strongly on the (geo)chemical constraints prevailing in the repository. Related experimental studies comprise effects induced by the presence of Fe based container material, and near field materials other than Fe for a rock salt environment. The effect of the presence of an argillaceous host rock containing organic matter and pyrite on fuel alteration was studied in addition. The results have shown that oxidative radio-lysis products were found to be consumed at a significant extent by the metallic Fe and by the argillaceous host rock. Under these conditions a decrease at a factor of ca.100 for both the matrix dissolution rates and the solution concentrations of U and Pu was found. There is mutual support between the matrix dissolution rates, the solution concentrations and the amounts of oxygen encountered during the experiments under various conditions controlled by the presence of near field materials under study.


2000 ◽  
Vol 663 ◽  
Author(s):  
Jinsong Liu ◽  
Bo Strömberg ◽  
Ivars Neretnieks

ABSTRACTA model has been developed to study the effects of secondary water radiolysis caused by dispersed radionuclides in a bentonite buffer surrounding a copper canister. The secondary radiolysis is the radiolysis caused by radionuclides that have been released from the spent fuel and are present either as solutes in the pore-water, as sorbed species on the surface of other minerals, or as secondary minerals. The canister is assumed to be initially defective with a hole of a few millimeters on its wall. The small hole will considerably restrict the transport of oxidants through the canister wall and the release of radionuclides to the outside of the canister. The dissolution of the spent fuel is assumed to be controlled by chemical kinetics at rates extrapolated from experimental studies. Two cases have been considered with the purpose to illustrate the behaviors of both conservative and non-conservative nuclides. The nuclides that are most relevant are those expected to be the dominant α-emitters in the long-term (e.g. 239Pu, 240Pu, 241Am). In the first case it is assumed that there is no precipitation of secondary minerals of the relevant radionuclides inside the canister. In the second case it is assumed that the radionuclide concentration within the canister is controlled by its respective solubility limit. The radionuclide released to the surrounding buffer is then predicted using a mass balance model. The modelling results show that in both cases, the spent fuel will not be oxidized at a rate significantly faster compared to the case where secondary radiolysis is completely neglected. In the first case, however, a large domain of the near-field can be oxidized due to a much faster depletion of reducing minerals in the buffer, compared to the case where secondary radiolysis is neglected. In the second case, the effects of the secondary water radiolysis will be quite limited.


1992 ◽  
Vol 294 ◽  
Author(s):  
Vladimir S. Tsyplenkov

ABSTRACTThe IAEA initiated, in 1991, a Coordinated Research Programme (CRP), with the aim of promoting the exchange of information on the results obtained by different countries in the performance of high-level waste forms and waste packages under conditions relevant to final repository. These studies are being undertaken to obtain reliable data as input to safety assessments and environmental impact analyses, for final disposal purposes. The CRP includes studies on waste forms that are presently of interest worldwide: borosilicate glass, Synroc and spent fuel.Ten laboratories leading in investigation of high-level waste form performance have already joined the programme. The results of their studies and plans for future research were presented at the first Research Coordination Meeting, held in Karlsruhe, Germany, in November 1991. The technical contributions concentrated on effecting an understanding of dissolution mechanisms of waste forms under simulated repository conditions. A quantitative interpretation of the chemical processes in the near field is considered a prerequisite for long-term predictions and for the formulation of a "source term" for performance assessment studies.


2002 ◽  
Vol 757 ◽  
Author(s):  
Andreas Loida ◽  
Bernhard Kienzler ◽  
Horst Geckeis

ABSTRACTWith respect to the assessment of the long-term behavior of the waste form spent fuel it is of high importance to study the fuel alteration in contact with groundwater and near field materials. The aim of this work is to evaluate the impact of candidate backfill materials hydroxylapatite and magnetite on the overall corrosion behavior of this waste form in salt brine; both materials are used in corrosion tests together with spent fuel. The instant releases and the matrix dissolution rates appear to be similar in presence and in absence of any backfill material under study. However, Am,Np,Pu,U and Sr are retained at different ratios on the hydroxylapatite, on the magnetite and on the fuel sample, indicating possibly the formation of different radionuclide containing new solid phases.


Author(s):  
Jan Marivoet ◽  
Xavier Sillen ◽  
Peter De Preter

Abstract Geological repository systems for the disposal of radioactive waste are based on a multi-barrier design. Individual barriers contribute in different ways to the overall long-term performance of the repository system, and furthermore, the contribution of each barrier can considerably change with time. In a systematic analysis of the functional requirements for achieving long-term safety a number of basic safety functions can be defined: physical confinement, retardation / slow release, dispersion / dilution and limited accessibility. In the case of the geological disposal of spent fuel in a clay formation a series of barriers are designed or chosen to contribute to the realisation of the basic safety functions. The physical confinement is realised by the watertight, high-integrity container, which prevents contact between groundwater and the confined radionuclides. In first instance the retardation / slow release function is realised by the slow dissolution of the waste matrix and by the limited solubility of many elements in the near field. However, the natural clay barrier provides the main contribution to this safety function. The migration of radionuclides through the Boom Clay is mainly due to molecular diffusion, which is an extremely slow process. Furthermore, many elements are strongly sorbed by the clay minerals what makes their migration even much slower. The dispersion / dilution function mainly occurs in the aquifer and the rivers draining the aquifer in the surroundings of the disposal system. Various performance indicators are used to quantify the contributions of each safety function and to explain the functioning of the repository system.


1984 ◽  
Vol 16 (3-4) ◽  
pp. 623-633
Author(s):  
M Loxham ◽  
F Weststrate

It is generally agreed that both the landfill option, or the civil techniques option for the final disposal of contaminated harbour sludge involves the isolation of the sludge from the environment. For short time scales, engineered barriers such as a bentonite screen, plastic sheets, pumping strategies etc. can be used. However for long time scales the effectiveness of such measures cannot be counted upon. It is thus necessary to be able to predict the long term environmenttal spread of contaminants from a mature landfill. A model is presented that considers diffusion and adsorption in the landfill site and convection and adsorption in the underlaying aquifer. From a parameter analysis starting form practical values it is shown that the adsorption behaviour and the molecular diffusion coefficient of the sludge, are the key parameters involved in the near field. The dilution effects of the far field migration patterns are also illustrated.


Author(s):  
Masashi Nakayama ◽  
Haruo Sato ◽  
Yutaka Sugita ◽  
Seiji Ito ◽  
Masashi Minamide ◽  
...  

In Japan, any high level radioactive waste (HLW) repository is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash Contained Silicafume Cement), containing over 60 wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40 wt% OPC (Ordinary Portland Cement), 20 wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m3 of HFSC was used. The workability of HFSC shotcrete was confirmed in this experimental construction.


2017 ◽  
Vol 17 (20) ◽  
pp. 12269-12302 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Eugene V. Rozanov ◽  
Fiona Tummon ◽  
...  

Abstract. Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km) for 1985–2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.


2019 ◽  
Vol 285 ◽  
pp. 456-467 ◽  
Author(s):  
Matthew D. Steinberg ◽  
Christine Slottved Kimbriel ◽  
Lieve S. d'Hont

2006 ◽  
Vol 352 (1-3) ◽  
pp. 246-253 ◽  
Author(s):  
C. Ferry ◽  
C. Poinssot ◽  
C. Cappelaere ◽  
L. Desgranges ◽  
C. Jegou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document