Materials for Future High Performance Magnetic Recording Heads

MRS Bulletin ◽  
1990 ◽  
Vol 15 (3) ◽  
pp. 36-44 ◽  
Author(s):  
Tomasz Jagielinski

Recording in the 1990s will be high density, high frequency, in-contact recording on high coercivity media. Today's state-of-the-art head materials, NiFe, Sendust and amorphous alloys, will be used in some applications. However, layered structured and artificial superlattices will become the key head technologies of the future. Use of advanced preparation techniques will allow “true” materials engineering and the fabrication of devices to incredibly accurate specifications.These very high density recording systems will require optimal inter-play between all the components—media, head, and head/media interface. Future media will be very smooth, high coercivity, large moment thin films. The head/media spacing will be less than 50 nm, and recording at more than 100 MHz will be required. Single-track heads will be replaced by very narrow track-width multitrack devices in high data rate recorders. Thin film heads will provide the answer to most of the problems of large recording fields and high frequency response. These changes will define new requirements for head materials, some of which cannot be met by currently used materials. Conventional ferrite heads will not be found in high performance recording systems; thin film inductive and magnetoresistive (MR) heads (Figure 1) will be widely used. Thin films, metals and alloys, both crystalline and amorphous, layered structures and artificial superlattices will be the key head technologies in the future. New material preparation technologies, MBE (molecular beam epitaxy), MOCVD (molecular chemical vapor deposition), sputtering, and ion beam deposition are becoming increasingly available and less expensive. These methods will be used to fabricate future devices to incredibly accurate specifications.

RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Kyoung Woo Park ◽  
Seunghee Lee ◽  
Hyunkoo Lee ◽  
Yong-Hwan Cho ◽  
Yong Cheon Park ◽  
...  

High-performance H:SiON single layer thin film encapsulation (TFE) was deposited by plasma enhanced chemical vapor deposition (PECVD) method. To control the characteristics of the SiON thin films, hydrogen gas was introduced during PECVD process.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


2011 ◽  
Vol 495 ◽  
pp. 108-111 ◽  
Author(s):  
Vasiliki P. Tsikourkitoudi ◽  
Elias P. Koumoulos ◽  
Nikolaos Papadopoulos ◽  
Costas A. Charitidis

The adhesion and mechanical stability of thin film coatings on substrates is increasingly becoming a key issue in device reliability as magnetic and storage technology driven products demand smaller, thinner and more complex functional coatings. In the present study, chemical vapor deposited Co and Co3O4thin films on SiO2and Si substrates are produced, respectively. Chemical vapor deposition is the most widely used deposition technique which produces thin films well adherent to the substrate. Co and Co3O4thin films can be used in innovative applications such as magnetic sensors, data storage devices and protective layers. The produced thin films are characterized using nanoindentation technique and their nanomechanical properties (hardness and elastic modulus) are obtained. Finally, an evaluation of the reliability of each thin film (wear analysis) is performed using the hardness to elastic modulus ratio in correlation to the ratio of irreversible work to total work for a complete loading-unloading procedure.


2014 ◽  
Vol 979 ◽  
pp. 240-243
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Pongpan Chindaudom ◽  
...  

Tantalum oxide (Ta2O5) thin films were deposited as the protective layers for the metal surface finishing by the DC reactive magnetron sputtering system. The effect of the Ta2O5 film thickness, ranging from 25 nm to 200 nm, on the physical properties and the anti-corrosive performance were investigated. The grazing-incidence X-ray diffraction (GIXRD) and the atomic force microscopy (AFM) were used to examine the crystal structures and the surface topologies of the prepared films, respectively. The XRD results showed that the Ta2O5 thin films were all amorphous. The AFM micrographs demonstrated the film morphology with quite smooth surface features. The surface roughness tended to be rough when the film thickness was increased. To examine the protective performance of the films, the poteniostat and galvanometer was utilized to examine the electrochemical activities with the 1M NaCl as the corrosive electrolyte. The results from the I-V polarization curves (Tafel slope) indicated that, with the Ta2O5 thin film, the current density was significantly reduced by 3 orders of magnitude when compared with the blank sample. Such results were observed because of fully encapsulated surface of the samples were covered with the sputtered Ta2O5 thin films. The study also showed that the Ta2O5 thin film deposited at 50 nm yielded the most extreme protective performance. The Ta2O5 thin films therefore could be optimized for the smallest film thickness for highly potential role in the protective performance of the metal surface finishing products.


2011 ◽  
Vol 335-336 ◽  
pp. 1418-1423
Author(s):  
De Yin Zhang ◽  
Wei Qian ◽  
Kun Li ◽  
Jian Sheng Xie

The Ion Beam Enhanced Deposited (IBED) lithium tantalate (LiTaO3) thin film samples with Al/LiTaO3/Pt electrode structure were prepared on the Pt/Ti/SiO2/Si(100) and SiO2/Si(100) substrate respectively. The crystallization, surface morphology, ferroelectric property, and fatigue property of the prepared samples with the different annealed processes were investigated. The XRD measured results show that the prepared samples have the polycrystal structure of LiTaO3 with the preferred orientation of <012> and <104> located at the 2θ of 23.60 and 32.70 respectively. The SEM morphology analysis reveals the prepared film annealed at 550°C is uniform, smooth and crack-free on the surface and cross section. The ferroelectric property measured results show that the remanent polarization Pr of the samples annealed at different temperature almost increase with the electric field intensity stronger. The leakage current makes the hysteresis loop of the samples subjected to a strong measured electric filed difficult to appear the same saturation hysteresis loop as the single-crystal LiTaO3. The prepared samples annealed at 550°C have a Pr value of 11.5μC/cm2 when subjected to the electrical field of 400kV/cm. The breakdown voltage of the 587nm thick thin film sample is high as to 680 kV/cm. The fatigue property measured results show only 15.17% Pr drop of the prepared films annealed at 550°C appear after 5×1010 cycles polarized by the 10MHz sinusoidal signal with the peak-to-peak amplitude of 10 Volt. The ferroelectric properties of the prepared films meet the practical application requirements of charge response measurement of the LiTaO3 infrared detector owe to the Pr of the prepared films annealed at different temperature large beyond 10μC/cm2 when the prepared films subjected to a strong electric filed larger than 400 kV/cm. The experimental results also show that the surface morphology, the ferroelectric and fatigue properties of the IBED LiTaO3 thin films are significant better than those of the Sol-Gel derived LiTaO3 thin films.


2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.


Sign in / Sign up

Export Citation Format

Share Document