Evaluating the effects of pillar shape and gallium ion beam damage on the mechanical properties of single crystal aluminum nanopillars

Author(s):  
Yang Yang ◽  
Sarah Y. Wang ◽  
Bin Xiang ◽  
Sheng Yin ◽  
Thomas C. Pekin ◽  
...  
2009 ◽  
Vol 24 (3) ◽  
pp. 844-852 ◽  
Author(s):  
M.J. Cordill ◽  
N.R. Moody ◽  
S.V. Prasad ◽  
J.R. Michael ◽  
W.W. Gerberich

In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns.


1987 ◽  
Vol 99 ◽  
Author(s):  
L. A. Tietz ◽  
B. C. De Cooman ◽  
C. B. Carter ◽  
D. K. Lathrop ◽  
S. E. Russek ◽  
...  

ABSTRACTThe microstructure of thin films of the high Tc superconductor YBa2Cu3O7−x deposited on SrTiO3 and Y-stabilized cubic-zirconia (YSZ) single-crystal substrates has been characterized by transmission electron microscopy. Films on both substrates were polycrystalline. On {001 }-oriented SrTiO3, the grains are oriented with <110> normal to the substrate surface. On the same orientation of YSZ, two microstructures are observed: one in which grains have their c-axes normal to the substrate surface, the other in which grains have the a- (or b-) axis normal to the substrate surface. Both of these microstructures contain special grain boundaries. Annealing of ion-milled TEM specimens is presented as a means of removing ion-beam damage.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
Jun Liu ◽  
Katie E. Gunnison ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

The interfacial structure between the organic and inorganic phases in biological hard tissues plays an important role in controlling the growth and the mechanical properties of these materials. The objective of this work was to investigate these interfaces in nacre by transmission electron microscopy. The nacreous section of several different seashells -- abalone, pearl oyster, and nautilus -- were studied. Nacre is a laminated composite material consisting of CaCO3 platelets (constituting > 90 vol.% of the overall composite) separated by a thin organic matrix. Nacre is of interest to biomimetics because of its highly ordered structure and a good combination of mechanical properties. In this study, electron transparent thin sections were prepared by a low-temperature ion-beam milling procedure and by ultramicrotomy. To reveal structures in the organic layers as well as in the interfacial region, samples were further subjected to chemical fixation and labeling, or chemical etching. All experiments were performed with a Philips 430T TEM/STEM at 300 keV with a liquid Nitrogen sample holder.


Author(s):  
Chun-Hung Lin ◽  
Hsin-Cheng Hsu ◽  
Tsung-Yi Lin ◽  
Ru-Hui Lin ◽  
I-An Chen ◽  
...  

Abstract Protection layers on double ex situ lift-out TEM specimens were investigate in this paper and two protection layer approaches for double INLO or double EXLO were introduced. The improved protection methods greatly decreased the damage layer on the top surface from 90 nm to 5 nm (or lower) during FIB milling. According to the property of different sample and its preliminary treatment in the FIB, we have the satisfactory approaches to be applied. Using this improved protection method, we demonstrate the structures within the TEM lamella can be observed without ion beam damage/implantation during FIB


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Sign in / Sign up

Export Citation Format

Share Document