Applying a Significant Protection Layer on Double Ex Situ Lift-out TEM Specimens to Protect Against Ion Beam Impact

Author(s):  
Chun-Hung Lin ◽  
Hsin-Cheng Hsu ◽  
Tsung-Yi Lin ◽  
Ru-Hui Lin ◽  
I-An Chen ◽  
...  

Abstract Protection layers on double ex situ lift-out TEM specimens were investigate in this paper and two protection layer approaches for double INLO or double EXLO were introduced. The improved protection methods greatly decreased the damage layer on the top surface from 90 nm to 5 nm (or lower) during FIB milling. According to the property of different sample and its preliminary treatment in the FIB, we have the satisfactory approaches to be applied. Using this improved protection method, we demonstrate the structures within the TEM lamella can be observed without ion beam damage/implantation during FIB

Author(s):  
Roger Alvis ◽  
Jeff Blackwood ◽  
Sang-Hoon Lee ◽  
Matthew Bray

Abstract Semiconductor devices with critical dimensions less than 20nm are now being manufactured in volume. A challenge facing the failure analysis and process-monitoring community is two-fold. The first challenge of TEM sample prep of such small devices is that the basic need to end-point on a feature-of-interest pushes the imaging limit of the instrument being used to prepare the lamella. The second challenge posed by advanced devices is to prepare an artifact-free lamella from non-planar devices such as finFETs as well as from structures incorporating ‘non-traditional’ materials. These challenges are presently overcome in many advanced logic and memory devices in the focused ion beam-based TEM sample preparation processes by inverting the specimen prior to thinning to electron transparency. This paper reports a highthroughput method for the routine preparation of artifact-free TEM lamella of 20nm thickness, or less.


Author(s):  
Liew Kaeng Nan ◽  
Lee Meng Lung

Abstract Conventional FIB ex-situ lift-out is the most common technique for TEM sample preparation. However, the scaling of semiconductor device structures poses great challenge to the method since the critical dimension of device becomes smaller than normal TEM sample thickness. In this paper, a technique combining 30 keV FIB milling and 3 keV ion beam etching is introduced to prepare the TEM specimen. It can be used by existing FIBs that are not equipped with low-energy ion beam. By this method, the overlapping pattern can be eliminated while maintaining good image quality.


1988 ◽  
Vol 53 (20) ◽  
pp. 1964-1966 ◽  
Author(s):  
T. L. Cheeks ◽  
M. L. Roukes ◽  
A. Scherer ◽  
H. G. Craighead
Keyword(s):  
Ion Beam ◽  

2006 ◽  
Vol 983 ◽  
Author(s):  
Kim M. Archuleta ◽  
David P. Adams ◽  
Michael J. Vasile ◽  
Julia E. Fulghum

AbstractMedium energy (30 keV) focused gallium ion beam exposure of silicon results in a compressive in-plane stress with a magnitude as large as 0.4 GPa. Experiments involve uniform irradiation of thin polysilicon microcantilevers (200 micron length) over a range of dose from 1 x 1016 to 2 x 1018 ions/cm2. The radii of curvature of microcantilevers are measured using white light interferometry before and after each exposure. The residual stress is determined from these radii and other measured properties using Stoney's equation. The large residual stress is attributed to ion beam damage, microstructural changes and implantation.


Author(s):  
Yang Yang ◽  
Sarah Y. Wang ◽  
Bin Xiang ◽  
Sheng Yin ◽  
Thomas C. Pekin ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 516-517
Author(s):  
Youren Xu ◽  
Chris Schwappach ◽  
Ron Cervantes

Focused ion beam lift-out technique has become increasingly attractive to the TEM community due to its unique advantage of no mechanical grinding/polishing involved in the process [1-3]. The technique essentially consists of two parts: preparation of membrane using focused ion beam (FIB) and transfer of the membrane (lift-out) to a grid. Up to date, this technique has only been demonstrated on single beam FIB systems. From a practical standpoint, overall sample quality (thickness) and lack of end-point precision are two major issues associated with the conventional single beam FIB technique. These issues are primarily related to ion beam damage and endpoint control encountered during the final stages of specimen thinning. As a result, the widespread use of FIB lift-out technique for high precision TEM specimen preparation has been limited. Recent technological advances have made it possible to combine both an electron beam column and an ion beam column into an integrated dual beam-focused ion beam (DB-FIB) system.


2017 ◽  
Vol 23 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Andrey Denisyuk ◽  
Tomáš Hrnčíř ◽  
Jozef Vincenc Oboňa ◽  
Sharang ◽  
Martin Petrenec ◽  
...  

AbstractWe report on the mitigation of curtaining artifacts during transmission electron microscopy (TEM) lamella preparation by means of a modified ion beam milling approach, which involves altering the incident angle of the Ga ions by rocking of the sample on a special stage. We applied this technique to TEM sample preparation of a state-of-the-art integrated circuit based on a 14-nm technology node. Site-specific lamellae with a thickness <15 nm were prepared by top-down Ga focused ion beam polishing through upper metal contacts. The lamellae were analyzed by means of high-resolution TEM, which showed a clear transistor structure and confirmed minimal curtaining artifacts. The results are compared with a standard inverted thinning preparation technique.


1986 ◽  
Vol 48 (10) ◽  
pp. 659-661 ◽  
Author(s):  
K. D. Cummings ◽  
L. R. Harriott ◽  
G. C. Chi ◽  
F. W. Ostermayer

Sign in / Sign up

Export Citation Format

Share Document