scholarly journals Establishing regularities in the propagation of phase transformation front during timber thermal modification

2021 ◽  
Vol 1 (10 (109)) ◽  
pp. 30-36
Author(s):  
Yuriy Tsapko ◽  
Oleksandra Horbachova ◽  
Аleksii Tsapko ◽  
Serhii Mazurchuk ◽  
Denys Zavialov ◽  
...  

The creation of environmentally friendly protective materials for building structures made of wood could make it possible to influence the processes of stability and the physical-chemical properties at the thermal modification of hornbeam wood over a certain time. That necessitates studying the conditions for investigating phase transformations when the timber is exposed to high temperature, as well as establishing the mechanism of hornbeam wood thermal modification. Given this, a mathematical model of the phase transformation process during the transfer of heat flux to a sample was built. Based on the derived dependences, it was established that when hornbeam wood is exposed to temperature treatment, it undergoes endothermic phase transformations characterized by the heat absorption and change in the color of hornbeam wood. In particular, at a temperature of 200 °C, the temperature in the wood decreases by 5 % due to the chemical changes in the structure of cell wall components (lignin, cellulose, and hemicellulose). It was found that the process of thermal modification is accompanied by the decomposition of hemicellulose and the amorphous part of cellulose, a decrease in moisture absorption, as well as a decrease in the volume of substances that are a medium for the development of fungi. In addition, lignin and the resulting pseudo lignin undergo a process of polymerization and redistribution throughout the cell volume. At the same time, they give the cell walls higher density, hardness, increase hydrophobicity (water repellency), thereby reducing the ability to absorb moisture and swell. It was established that the most effective parameter of phase transformations is the temperature and aging duration. The results of moisture absorption have been given; it has been found that over 6 hours of modified timber exposure, its moisture absorption decreases by more than 10 times, which allows its application at facilities with high humidity

2014 ◽  
Vol 997 ◽  
pp. 488-491
Author(s):  
Zhi Jia Yu ◽  
Shan Peng Song ◽  
Yan Feng Li ◽  
Fu Tao Qin ◽  
Guo Zhu Kuang

Development of new material based on bionics has aroused researchers’interests in recent years. Function surfaces could found their application in many areas. Characteristics of super-hydrophobic surfaces were studied in some aspects experimentally, such as the droplet’s behavior on the super-hydrophobic surface, the effects of the organic compound content in water on wettability of the surface, the super hydrophobicity and super oleophilicity and the phase transformation process on the super-hydrophobic surface. It is shown that the super-hydrophobic surfaces have the characters of no-droplet adherence, oleophilic and dropwise condensation. Applications are expected in industries and daily life with those characters.


2011 ◽  
Vol 83 (5) ◽  
pp. 1085-1092 ◽  
Author(s):  
Markus Rettenmayr

Supersaturations and depletion or enrichment of solute/solvent are known to be the driving forces for phase transformations. In the present work, a series of different experiments is presented where in a single phase or a two-phase mixture supersaturation or enrichment/depletion of solute occur in at least one of the phases. In all cases the result is a phase transformation, particularly either the precipitation of a secondary phase out of a primary phase, or the migration of the interface in a two-phase mixture. It is demonstrated that solute transport in the phase exhibiting faster kinetics controls the phase transformation process.


2021 ◽  
Vol 280 ◽  
pp. 07009
Author(s):  
Yuriy Tsapko ◽  
Olga Bondarenko ◽  
Oleksandra Horbachova ◽  
Serhii Mazurchuk ◽  
Nataliya Buyskikh

The analysis of the process of thermal modification of wood, which was modified by a controlled process of pyrolysis of wood heating (> 180 ° C) in the absence of oxygen, which causes some chemical changes in the chemical structures of cell wall components (lignin, cellulose and hemicellulose), durability. It is proved that in the process of thermal modification the decomposition of hemicelluloses and the amorphous part of cellulose occurs, and therefore the amount of substances that are the environment for the development of fungi in wood significantly decreases. In addition, lignin and the formed pseudolignin undergo a process of polymerization and redistribution of cell volume and give cell walls greater density, hardness, increase hydrophobicity (water repellency), thereby reducing their ability to absorb moisture and edema. Polymerized lignin fills the inner cavity of the cell, forming a closed porous structure with a low ability to bind water. It was found that the most effective parameter for reducing such substances is the temperature and exposure time. The results of thermogravimetric researches are given, the dependence of weight loss on temperature of researches on the basis of which activation energy is calculated is defined. The results of determining the activation energy show that for hardwood species this value exceeds more than 1.5 times compared to softwood.


1988 ◽  
Vol 53 (12) ◽  
pp. 3072-3079
Author(s):  
Mojmír Skokánek ◽  
Ivo Sláma

Molar heat capacities and molar enthalpies of fusion of the solvates Zn(NO3)2 . 2·24 DMSO, Zn(NO3)2 . 8·11 DMSO, Zn(NO3)2 . 6 DMSO, NaNO3 . 2·85 DMSO, and AgNO3 . DMF, where DMSO is dimethyl sulfoxide and DMF is dimethylformamide, have been determined over the temperature range 240 to 400 K. Endothermic peaks found for the zinc nitrate solvates below the liquidus temperature have been ascribed to solid phase transformations. The molar enthalpies of the solid phase transformations are close to 5 kJ mol-1 for all zinc nitrate solvates investigated. The dependence of the molar heat capacity on the temperature outside the phase transformation region can be described by a linear equation for both the solid and liquid phases.


2019 ◽  
Vol 116 (6) ◽  
pp. 614
Author(s):  
Li Chang ◽  
Gao Jingxiang ◽  
Zhang Dacheng ◽  
Chen Zhengwei ◽  
Han Xing

Obtaining an accurate microscopic representation of the martensitic transformation process is key to realizing the best performance of materials and is of great significance in the field of material design. Due to the martensite phase transformation is rapidly, the current experimental is hard to capture all the information in the Martensite phase transformation process. Combining the phase-field method with the finite-element method, a model of martensitic transformation from a metastable state to a steady state is established. The law of a single martensite nucleus during martensitic transformation is accurately described. By changing the key materials that affect martensite transformation and the phase-field parameters, the effects of the parameters on the single martensitic nucleation process are obtained. This study provides an important theoretical basis for effectively revealing the essence of martensite transformation and can determine effective ways to influence martensite transformation, obtain the optimal parameters and improve the mechanical properties of such materials.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 611 ◽  
pp. 46-53 ◽  
Author(s):  
Ladislav Novotný ◽  
Vladimír Ivančo

In the paper the principle of welding simulation is presented and the methods of solution of phase transformation are described. The first part characterizes elementary equations of heat transient solution, boundary conditions during welding simulation (prescribing moving heat flux, convection, radiation). The methods of phase transformations’ solution are described for diffusion processes as well as diffusionless processes.


Author(s):  
R. J. Dennis ◽  
R. Kulka ◽  
O. Muransky ◽  
M. C. Smith

A key aspect of any numerical simulation to predict welding induced residual stresses is the development and application of an appropriate material model. Often significant effort is expended characterising the thermal, physical and hardening properties including complex phenomena such as high temperature annealing. Consideration of these aspects is sufficient to produce a realistic prediction for austenitic steels, however ferritic steels are susceptible to solid state phase transformations when heated to high temperatures. On cooling a reverse transformation occurs, with an associated volume change at the isothermal transformation temperature. Although numerical models exist (e.g. Leblond) to predict the evolution of the metallurgical phases, accounting for volumetric changes, it remains a matter of debate as to the magnitude of the impact of phase transformations on residual stresses. Often phase transformations are neglected entirely. In this work a simple phase transformation model is applied to a range of welded structures with the specific aim of assessing the impact, or otherwise, of phase transformations on the magnitude and distribution of predicted residual stresses. The welded structures considered account for a range of geometries from a simple ferritic beam specimen to a thick section multi-pass weld. The outcome of this work is an improved understanding of the role of phase transformation on residual stresses and an appreciation of the circumstances in which it should be considered.


Sign in / Sign up

Export Citation Format

Share Document