scholarly journals Determining the influence of ultra-dispersed aluminum nitride impurities on the structure and physical-mechanical properties of tool ceramics

Author(s):  
Edwin Gevorkyan ◽  
Volodymyr Nerubatskyi ◽  
Volodymyr Chyshkala ◽  
Yuriy Gutsalenko ◽  
Oksana Morozova

This paper considers features related to manufacturing the chromium oxide-based tool material. The process involved ultra-dispersed powders made of aluminum nitride. It has been established that the destruction of chromium oxide at high sintering temperatures is prevented through the reaction sintering of chromium oxide (Cr2O3) and aluminum nitride (AlN). It was established that the structure of the composite depends both on the temperature and the duration of hot pressing. Thermodynamic calculations of the interaction between Cr2O3 and AlN showed that this interaction begins at a temperature of 1,300 °C. In contrast to hot pressing in the air, no СrN and Сr2N compounds were formed in a vacuum. With increasing temperature, the content of Al2O3 in solid solution becomes maximum at a temperature of 1,700 °C in the case of hot pressing in the air while in vacuum the content of Al2O3 remains unchanged within the entire temperature range of 1,300–1,700 °C. When increasing the time of hot pressing to 30 minutes, the size of individual grains reaches 10 μm. It has been shown that in the sintering process involving Cr2O3 and AlN, the plasma-chemical synthesis produces the solid solution (Cr, Al)2O3 at the interphase boundary, which improves the mechanical properties of the material. The influence exerted on the quality of the machined surface of tempered hard steel when machining by the devised tool material based on chromium oxide with an optimal admixture of 15 wt % of ultra-dispersed aluminum nitride powder was investigated. It was determined that the quality of the machined hard steel surface improved compared to standard imported tool plates. It was established that the resulting tool material, in addition to relatively high strength and crack resistance, also demonstrates high thermal conductivity, which favorably affects the quality of the machined steel surface, given that lubricants and coolants are not used during the cutting process.

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Lianbing Zhong ◽  
Guihong Geng ◽  
Yujin Wang ◽  
Feng Ye ◽  
Limeng Liu

A fully dense TaC ceramic was prepared by hot pressing using 10 mol% ZrC plus 5 mol% Cu as a sintering aid. Formation of (Ta, Zr)C solid solution (ss) by reaction between TaC and ZrC facilitated densification. Addition of Cu refined the microstructure and consequently improved flexural strength of the TaC ceramics. TEM investigation found ubiquitous precipitation of nanocrystallites at multigrain conjunctions. The nanocrystallites were (Ta, Zr)C solid solution with uniform dispersion in an oxygen-rich glassy matrix. Although formation of nanoprecipitates may not much affect the mechanical properties of the TaC ceramic, the structure suggested a new type of nanoceramic worth further research.


2016 ◽  
Vol 7 (6) ◽  
pp. 605-608
Author(s):  
Vadim Chayevski ◽  
Valerij Zhylinski

The parameters of electrolytic synthesis of Ni-P coatings on steel surface from sulfate-chloride electrolyte have been determinated. The Ni-P alloys consist of separate phases of Ni and Ni3P and solid solution of implementation on the basis of the FCC Ni lattice, when it was deposited from the electrolyte at current density to be more than 7 A/dm2. The coating was formed with continuous globular surface at current density of 5 A/dm2. The globular formations are the Ni3P phase. The obtained at current density of 9 A/dm2 coatings have maximum value of micro¬hardness 430 HV. Darbe buvo nustatyti Ni-P dangų ant plieno paviršiaus elektrolitinės sintezės (iš sulfatinio-chloridinio elektrolito) parametrai. Ni-P lydinių mikrostruktūrą sudaro atskiros Ni ir Ni3P fazės arba nikelio kietasis įterpimo tirpalas, turintis kubinę paviršiaus centruotą gardelę, kai dangos yra nusodinamos iš elektrolito, esant srovės tankiui daugiau negu 7 A/dm2. Kai srovės tankis yra daugiau negu 5 A/dm2, formuojasi ištisinis, rutulinio pobūdžio dangos paviršius. Rutulio formos darinius sudaro Ni3P fazė. Dangos, turinčios didžiausią mikrokietumo reikšmę 430 HV, gautos esant srovės tankiui 9 A/dm2.


2013 ◽  
Vol 592-593 ◽  
pp. 397-400
Author(s):  
Dinara Sultanovna Dallaeva ◽  
Gulnara Darvinovna Kardashova ◽  
Gadjimet Kerimovich Safaraliev ◽  
Pavel Tománek

This study describes the principles of synthesis and technological features of composition ceramics formation on the basis of silicon carbide and aluminum nitride by hot-pressing. The structural properties and composition of the ceramics were investigated by scanning electron microscope and the formation of the solid solution is confirmed. The elements distribution on the surface of failure pattern is shown. The results of the study are useful for optimization of manufacturing process of structural and functional high-density ceramics.


2004 ◽  
Vol 471-472 ◽  
pp. 369-373
Author(s):  
Sui Lian Wang ◽  
Li Qiang Xu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu

Ti(C, N) based ceramic tool materials in the Ti (C0.7N0.3)-(Ni-Co)-Cr3C2-VC system have been made by hot-pressing technology, their mechanical properties and fracture morphologies have been studied under three different fabrication conditions. The results show that the mechanical properties are significantly influenced by fabrication conditions, and the main fracture mode is intergranular fracture.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Sign in / Sign up

Export Citation Format

Share Document