scholarly journals Development of the method for estimating complex formation using the electrochemical impedance spectroscopy on the example of the doxycycline and iron (III) interaction

Author(s):  
Anna Dobrova ◽  
Yevhenii Antonenko ◽  
Olga Golovchenko ◽  
Natalia Harna ◽  
Svitlana Garna ◽  
...  

The aim. To develop an EIS method for study the interaction between medicinal products and metal salts on the example of the Doxycycline and iron (III) interaction. Materials and methods. Measurements of the total impedance of the studied solutions have been performed using a vector circuit analyzer ZNB40 (Rohde & Schwarz, Germany). The calculations of electrical models were performed using the software package EC-Lab V10.40. Measurement cell was made of Teflon, 1 ml of volume, had 2 parallel nickel plated steel electrodes with diameter 6 mm, distance between electrodes is 9 mm. Basic electrical elements of model circuit were calculated according to type of electrochemical process that were described by Nyquist plot (RW, Rct, RS, Cd, CS etc.). Solutions were prepared immediately before the measurement. Measurements were performed at a temperature of 296±3 K. 6 control solutions of doxycycline and 6 control solutions of iron (III) chloride were prepared and measured. 11 study solutions at a molar ratio 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1 were prepared and measured. Concentration of the solutions was X∙10-3 mol/L respectively. Results. EIS analysis of Nyquist curves of study solutions in the range of molar ratios 1: 6, 1: 5, 1: 4, 1: 3, 1: 2, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1 showed a change in the dynamics of electrical resistance at a ratio of 1:1. In the aqueous solution at T = 296±3 K the constant formation of the solution of doxycycline hyclate and iron (III) chloride is 2.9. This value of the complexation constant indicates that doxycycline hyclate forms a stable metal-ligand complex with iron (III) ions. Conclusions. EIS method can be applied to study the interaction of medicinal products. Model of this study was created on the example of doxycycline hyclate and iron (III) chloride. Metal-ion complexation of these two molecules was once again confirmed by using the EIS method

2004 ◽  
Vol 57 (6) ◽  
pp. 565 ◽  
Author(s):  
Nathaniel W. Alcock ◽  
Guy J. Clarkson ◽  
Geoffrey A. Lawrance ◽  
Peter Moore

Reaction of nickel(II) or copper(II) acetate with 2-(aminomethyl)pyridine 1 and pyridine-2,6-dicarboxylate ion 2 in aqueous methanol in a 1 : 1 : 1 molar ratio leads to the crystallization in high yield of exclusively one product in each case. For nickel(II), a neutral mixed-ligand complex [Ni · 1 · 2 · (OH2)] is obtained, whereas with copper(II) an ionic complex [Cu · 12 · (OHCH3)][Cu · 22] forms wherein each complex ion contains exclusively one type of ligand. The outcome appears to be directed by the metal ion employed, the two forms being effectively coordination isomers, albeit differing in central metal ion. The neutral complex [Ni · 1 · 2 · (OH2)] · 4¼H2O crystallizes in the triclinic space group P¯1, with two independent nickel centres and ten (some with partial occupancy) water molecules in the asymmetric unit. Each nickel lies in a distorted octahedral environment, with the three N-donor and O-donor sets occupying meridional positions. A complex system of hydrogen bonding and Π-stacking operates in the crystal, with arrays of complex units arranged in ‘dimer tapes’ surrounded by water molecules. The ionic [Cu · 12 · (OHCH3)][Cu · 22] · 2CH3OH complex crystallizes in the monoclinic P21/c space group. The cation adopts a distorted square-based pyramidal geometry with a coordinated methanol in the axial position, although another is weakly interacting in the other axial site. The anion exists in the previously described octahedral geometry with two meridionally-disposed tridentate ligands with the pyridines disposed in trans positions. Three-dimensional ordering in the structure is directed by ‘ribbons’ of hydrogen bonding.


Author(s):  
Indu Raj ◽  
Dr.Smt. Manjul Shrivastava

In view of the fact that a large number of derivatives of benzoxazole have been found toexhibit a wide variety of antimicrobial activities. Heterocyclic compounds play an importantrole in medicinal chemistry and exhibit wide range of biological activities in pharmaceuticalchemistry. Complexes of 2-aminobenzoxazole (L) with chloride of iron (II), was synthesized.The molar ratio metal: ligand in the reaction of the complex formation was 1:2. It should benoticed, that the reaction of all the metal salts yielded bis (ligand) complex of the generalformula M (L) 2(CL) 2. The complex was characterized by elemental analysis, melting point,FT-IR, 1H NMR, spectral data. The antifungal activity against different fungai, A.niger,A.flavus, Fusarium oxysporum, paecilomyces variotii, C.albicans.


1970 ◽  
Vol 25 (1) ◽  
pp. 22-26 ◽  
Author(s):  
G. Sharma ◽  
J. P. Tandon

Stepwise mixed ligand complex formation is observed in the systems containing metal ion, iminodiacetic acid (IMDA) as primary ligand and one of the diamines, such as ethylenediamine (en), 1,2-propanediamine (1,2-pn) and 1,3-propanediamine (1,3-pn) as secondary ligands. Potentionmetric titrations indicate the formation of ternary complexes having a 1:1:1 molar ratio of metal ion to iminodiacetic acid to the secondary ligand. Initially, metal-IMDA (1:1) complex is formed in the lower buffer region prior to the formation of the ternary complex and the addition of the secondary ligand takes place only after the combination with the primary ligand is complete. Formation constants (log KMAB) of the ternary complexes have been calculated and the probable reaction mechanism is suggested. The order of stability in terms of metal ion has been found to be Cu (II) > Ni (II) >Zn (II) >Cd (II) and in terms of secondary ligand as 1,2-pn>en>1,3-pn.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Svetlana Belošević ◽  
Mirjana Radanović ◽  
Marko Rodić ◽  
Vukadin Leovac

The syntheses, physicochemical and structural properties of the novel Cu(II) complex with 2,6-diacetylpyridine bis(phenylhydrazone) (L), of the formula [CuL2]Br2 are presented. In the reaction of warm MeOH solutions of the ligand, 2,6-diacetylpyridine bis(phenylhydrazone) and CuBr2 in molar ratio 2:1 resulted in formation of black single crystals of the bis(ligand) complex. This is the first Cu(II) complex with this ligand that is characterized by SC-XRD. Two ligand molecules are coordinated in the usual tridentate mode, via nitrogen atoms of the pyridine ring, and two azomethine nitrogen atoms, forming distorted octahedral environments of the metal ion.


2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veton Haziri ◽  
Tu Pham Tran Nha ◽  
Avni Berisha ◽  
Jean-François Boily

AbstractGas bubbles grown on solids are more than simple vehicles for gas transport. They are charged particles with surfaces populated with exchangeable ions. We here unveil a gateway for alkali metal ion transport between oxygen bubbles and semi-conducting (iron oxide) and conducting (gold) surfaces. This gateway was identified by electrochemical impedance spectroscopy using an ultramicroelectrode in direct contact with bubbles pinned onto these solid surfaces. We show that this gateway is naturally present at open circuit potentials, and that negative electric potentials applied through the solid enhance ion transport. In contrast, positive potentials or contact with an insulator (polytetrafluoroethylene) attenuates transport. We propose that this gateway is generated by overlapping electric double layers of bubbles and surfaces of contrasting (electro)chemical potentials. Knowledge of this ion transfer phenomenon is essential for understanding electric shielding and reaction overpotential caused by bubbles on catalysts. This has especially important ramifications for predicting processes including mineral flotation, microfluidics, pore water geochemistry, and fuel cell technology.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.


Author(s):  
Ghazanfar Abbas ◽  
Rizwan Raza ◽  
Muhammad Ashraf Chaudhry ◽  
Bin Zhu

The entire world’s challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10–20nm by Scherrer’s formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.


2004 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Baghdad Science Journal

We found that 4,5- diphenyl- 3(2- propynyl) thio- 1??-triazole [1? forms a complex with Pd (11) ion of ratio 1:1 which absorbs light in CH2CI2 at 400 nm, and 4,5- diphenyl- 3(2- propenyl) thio- 1,2,4- triazole [II] forms complexes with Pd (II) ion of ratio 1:1 which absorbs light at 390 nm, and of ratio 2:1 which absorbs light at 435 nm. On the other hand, we found that the new derivative 4- phenyl- 5( p- amino phenyl) -3- mercapto- 1,2,4- triazole ?111? forms complexes with Cu (II) ion of the ratio 1:1 which absorbs light at 380 nm, with Ni (II) ion of the ratio 3:1 which absorbs light at 358 nm; and with Co (11) ion of the ratio 3.2:1 which absorbs light at 588 nm. The ratio of the complexes were determined by measuring the electronic spectra of the complexes in CH2G2 and (CH^NCHO at different concentrations ofthe ligands and f?xed ' •' of the metal ion in every case, then applying the molar ratio plots on the data. Our results were confirmed by precipitating most ofthe above complexes in solid state, and then each complex was analyzed elementally.


2016 ◽  
Vol 13 (2) ◽  
pp. 105-114
Author(s):  
Baghdad Science Journal

New metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes, except square planar for Pd(II) complex and except octahedral geometry for Pt(IV) and Re(V) complexes. The study of complexes formation via molar ratio of (M:L) as (1:1). Theoretical treatment of this ligand and its metal complexes in gas phase using Hyper chem.8 was preformed.


Sign in / Sign up

Export Citation Format

Share Document