scholarly journals THE INFLUENCE OF ROCK LITHOGENESIS TYPES ON POROSITY AND PERMEABILITY (THE CASE OF PERMOCARBONIFEROUS DEPOSIT OF THE USINSKOYE FIELD)

Author(s):  
Nikita A. Popov ◽  
◽  
Ivan S. Putilov ◽  
Anastasiia A. Guliaeva ◽  
Ekaterina E. Vinokurova ◽  
...  

The paper analyzes a methodology aimed at differentiation of porosity, permeability and petrographic properties depending on facies attributes. Based on the Dunham classification, we offer in-depth studies of the influence of rock fabric, including full-size core samples, on changes in porosity and permeability. The work deals with the Permo-Carboniferous deposit of the Usinskoye field. Reservoir properties of the considered strata are highly heterogeneous. Along with highly porous and cavernous rocks, there are low porous and fractured varieties in the section, which refer to rocks of various lithological compositions. The porosity and permeability properties were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes.The analysis of the maximum variation range is of particular importance for structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated geological and physical parameters for each of them. Based on the cumulative correlation plots, four zones of heterogeneity were identified. They are subject to the influence of properties of the core samples of different lithogenesis types. This is the first time that the influence of various petrotypes/lithotypes on changes in the reservoir porosity and permeability has been studied for the Usinskoye field based on the petrographic and petrophysical research findings. All the conducted experiments show that the rocks of the Permo-Carboniferous deposit of the Usinskoye field are extremely heterogeneous in their permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a void space fabric and lithology of rocks.

2020 ◽  
Vol 10 (24) ◽  
pp. 9065
Author(s):  
Aliya Mukhametdinova ◽  
Polina Mikhailova ◽  
Elena Kozlova ◽  
Tagir Karamov ◽  
Anatoly Baluev ◽  
...  

The experimental and numerical modeling of thermal enhanced oil recovery (EOR) requires a detailed laboratory analysis of core properties influenced by thermal exposure. To acquire the robust knowledge on the change in rock saturation and reservoir properties, the fastest way is to examine the rock samples before and after combustion. In the current paper, we studied the shale rock properties, such as core saturation, porosity, and permeability, organic matter content of the rock caused by the combustion front propagation within the experimental modeling of the high-pressure air injection. The study was conducted on Bazhenov shale formation rock samples. We reported the results on porosity and permeability evolution, which was obtained by the gas pressure-decay technique. The measurements revealed a significant increase of porosity (on average, for 9 abs. % of porosity) and permeability (on average, for 1 mD) of core samples after the combustion tube experiment. The scanning electron microscopy showed the changes induced by thermal exposure: the transformation of organic matter with and the formation of new voids and micro and nanofractures in the mineral matrix. Low-field Nuclear Magnetic Resonance (NMR) was chosen as a primary non-disruptive tool for measuring the saturation of core samples in ambient conditions. NMR T1–T2 maps were interpreted to determine the rock fluid categories (bitumen and adsorbed oil, structural and adsorbed water, and mobile oil) before and after the combustion experiment. Changes in the distribution of organic matter within the core sample were examined using 2D Rock-Eval pyrolysis technique. Results demonstrated the relatively uniform distribution of OM inside the core plugs after the combustion.


2020 ◽  
Vol 17 (2) ◽  
pp. 1207-1213 ◽  
Author(s):  
Muhammad Aslam Md Yusof ◽  
Mohamed Zamrud Zainal ◽  
Ahmad Kamal Idris ◽  
Mohamad Arif Ibrahim ◽  
Shahrul Rizzal M. Yusof ◽  
...  

Sequestration of Carbon Dioxide (CO2) in sandstone formation filled by brine aquifers is widely considered a promising option to reduce the CO2 concentration in the atmosphere. However, the injection of reactive CO2 into sandstone rock creates injectivity problems because of CO2-brine-rock interactions. The injection flow rate and CO2-fluid-rock exposure conditions are important factors that control the intensity of the reactions. The focus of this research was therefore on evaluating the petrophysical modifications in sandstone core samples at distinct flow rates using different CO2 injection schemes. In this research, the porosity and permeability of Berea sandstone samples were measured using PoroPerm equipment. The core samples were initially saturated with dead brine (30 g/l NaCl) followed by injection either by supercritical CO2 (scCO2) only, CO2-saturated brine only and CO2-saturated brine together with scCO2 at different flow rates. During injection, the differential pressure between the core inlet face and outlet face were recorded. Fines from the produced effluent were separated and collected for characterization using Field Emission Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy (FESEM-EDX). Post-injection porosity and permeability of the core samples were measured and compared with the pre-injection data to monitor changes. All sandstone core specimens showed favorable storage capability features in the form of capillary residual trapping with residual CO2 saturation ranging from 40% to 48%. In addition, all samples experienced important changes in their petrophysical characteristics, which were more pronounced in the event of absolute porosity and permeability, which decreased from 20%–51% to 4%–32%. The suggested harm mechanism is primarily owing to salt precipitation and fines migration. Supported by FESEM images, the proposed damage mechanism is mainly due to salt precipitation and fines migration.


Author(s):  
V. Sultanov ◽  
L. Sultanov

The complex results of petrophysical testing of rocks, taken from prospecting-development wells of Duvanni-deniz, Sangachal-deniz, Bulla-deniz, Garasu and etc. areas, where the sediments of productive stratum are widely expanded, have been given. Average values of granulometric composition of rocks of productive unit of the above areas by the section have been recounted. The problem of dependence of permeability on porosity and depth was solved. Dependence between physical parameters for the individual kinds of rocks, dependence between physical properties and material structures are established. The results of various petrophysical research methods show that the filtration capacitance properties, in general, deteriorate with depth. However, in certain cases, in clay and carbonate rocks, reservoir properties can improve, due to the appearance of secondary porosity under relatively stringent thermobaric conditions. The histograms, which consist of average values of granulometric composition of productive stratum rocks when crossing some places of archipelago are constructed, the problems of dependence of permeability on porosity and depth were solved. The researches showed, that the physical process of the same- named and same-aged features rocks change in the result of geological-physical processes, getting different values. It's noticed, that the porosity and permeability are increasing from north-west to south-east by changing lithological composition.


Author(s):  
Morten Bjerager ◽  
Claus Kjøller ◽  
Mette Olivarius ◽  
Dan Olsen ◽  
Niels H. Schovsbo

The fully cored Blokelv-1 borehole was drilled through Upper Jurassic strata in the central part of the Jameson Land Basin, central East Greenland. The borehole reached a total depth of 233.8 m with nearly 100% recovery of high-quality core. An extensive analytical programme was undertaken on the core; sedimentological interpretation and reservoir characterisation were based on facies analysis combined with conventional core analysis, bulk geochemistry and spectral gamma and density scanning of the core. The Upper Jurassic Hareelv Formation was deposited in relatively deep water in a slope-to-basin setting where background sedimentation was dominated by suspension settling of organic-rich mud in oxygen-depleted conditions. Low- and high-density gravity-flow sandstone interbeds occur throughout the cored succession. About two-thirds of the high-density turbidite sandstones were remobilised and injected into the surrounding mud-rock. The resulting succession comprises nearly equal amounts of mudstones and sandstones in geometrically complex bodies. Ankerite cementation occurs in 37% of the analysed sandstones in varying amounts from minor to pervasive. Such ankerite-cemented sandstones can be identified by their bulk geochemistry where Ca > 2 wt%, Mg > 1 wt% and C > 1 wt%. The analysed mudstones are rich in Al, Fe, Ti and P and poor in Ca, Mg, Na and Mn. The trace-metal content shows a general increase in the upper part of the core reflecting progressive oxygen depletion at the sea floor. The reservoir properties of the Blokelv-1 sandstones were evaluated by both conventional core analysis and using log-derived porosity and permeability curves. The high-density turbidite beds and injectite bodies are a few centimetres to several metres thick and show large variations in porosity and permeability, in the range of 6–26 % for porosity and 0.05–400 mD for permeability. Individual sandstone units that are 1–7 m thick yield a net vertical reservoir thickness of 40 m with porosities of 15–26% and permeabilities of 1–200 mD. Heterolithic sandstone–mudstone units are generally characterised by poor reservoir quality with porosities of 2–14% and permeabilities of 0.1–0.6 mD.


2021 ◽  
Vol 54 (1B) ◽  
pp. 24-42
Author(s):  
Fawzi Al-Beyati

The corrected porosity image analysis and log data can be used to build 3D models for porosity and permeability. This can be much realistic porosity obtainable because the core test data is not always available due to high cost which is a challenge for petroleum companies and petrophysists. Thus, this method can be used as an advantage of thin section studies and for opening horizon for more studies in the future to obtain reservoir properties. Seventy-two core samples were selected and the same numbers of thin sections were made from Khasib, Sa`di, and Hartha, formations from Ba-1, Ba-4, and Ba-8 wells, Balad Oilfield in Central Iraq to make a comprehensive view of using porosity image analysis software to determine the porosity. The petrophysical description including porosity image analysis was utilized and both laboratory core test analysis and well log analysis were used to correct and calibrate the results. The main reservoir properties including porosity and permeability were measured based on core samples laboratory analysis. The results of porosity obtained from well log analysis and porosity image analysis method are corrected by using SPSS software; the results revealed good correlation coefficients between 0.684 and 0.872. The porosity range values are 9-16% and 9-27% for Khasib and Sa’di in Ba-1 Well, respectively; 10-21%, 9-25%, and 16-27% for Khasib, Sa’di and Hartha in Ba-4 Well, respectively; and 11-24% and 15-24% for Khasib and Hartha in Ba-8 Well, respectively according to petrographic image analysis. By using the laboratory core analysis, the porosity range values are 12-26% and 17-24% for Khasib and Sa’di in Ba-1 Well, respectively; 6-28% and 14-27% for Sa’di and Hartha in Ba-4 Well, respectively; and 17-19% and 15-24% for Sa’di and Hartha in Ba-8 Well, respectively. Finally, the well log analysis showed that the porosity range values are 11-16% and 7-27% for Khasib and Sa’di in Ba-1 Well, respectively; 4-18%, 21-26%, and 16-19% for Khasib, Sa’di and Hartha in Ba-4 Well, respectively; and 9-24% and 15-23% for Khasib and Hartha in Ba-8 Well, respectively. The permeability range values based on laboratory core analysis are 1.51-8.97 md and 0.29-2.77 md for Khasib and Sa’di in Ba-1 Well, respectively; 0.01-24.5 md and 0.28-6.47 md for Sa’di and Hartha in Ba-4 Well, respectively; and 0.86-2.25 md and 0.23-3.66 for Sa’di and Hartha in Ba-8 Well, respectively.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhihang Li ◽  
Xiong Hu

The sensitivity of oil reservoir rocks to stress is the basis for oilfield development, which determines the production method employed in the field. Therefore, it is critical to understand the stress sensitivity behavior of oil reservoir rocks in an oilfield. In this paper, a novel method for determining the stress sensitivity of oil reservoir rocks by triaxial stress testing without fluid flooding was proposed. It measures the triaxial stress and strain of the core rock samples, and based on which, the core porosity and permeability under stress can be evaluated by theoretical model. In the model, the pores of the core were assumed to be a bundle of capillaries and the necessary relationship was derived to calculate the changes of porosity and permeability of the core samples caused by the strain. Through comparison with and analysis of experimental results obtained for various rock core samples under different stress and strain conditions, it is observed that the theoretical model match well with that of the experiments. This method provides a new approach for the stress sensitivity analysis of oil reservoirs without fluid flooding.


1985 ◽  
Vol 25 (06) ◽  
pp. 909-916 ◽  
Author(s):  
A.T. Watson ◽  
P.D. Kerig ◽  
R.W. Otter

Abstract Homogeneous core samples are needed for EOR experiments. We have devised a simple test for detecting the presence of nonuniformities in cores. The test consists of presence of nonuniformities in cores. The test consists of measuring the pressure drop across the core during a two-phase immiscible displacement experiment. We show that for a constant injection rate, the pressure drop will be linear with time provided that the core is homogeneous. In situations for which the initial section of the core is homogeneous, but the properties are not uniform in a latter section of the core, the location of the position where the rock properties fast change may be approximately determined. The effect of heterogeneities on the pressure-drop profile is demonstrated with analytical solutions and profile is demonstrated with analytical solutions and laboratory experiments. Introduction Core samples are used routinely for EOR or relative permeability experiments. For such experiments, selection permeability experiments. For such experiments, selection of a homogeneous core sample is necessary. Visual inspection of the core is not sufficient to ensure homogeneity. Often, vugs or shale barriers may be present, which may invalidate experimental results. In this paper, a simple test to detect the presence of core heterogeneities is devised. The scale of heterogeneities considered corresponds to the usual macroscopic description of porous medium properties. The properties of a porous medium (e.g., the properties. The properties of a porous medium (e.g., the porosity and permeability) at any particular location refer porosity and permeability) at any particular location refer to average quantities for some appropriate (small) representative volume element. In this way, each (locally averaged) property is defined at every point within the medium, the collection of which defines the representation of each property as a function of position. If each macroscopic property has the same value at all positions, the medium is said to be homogeneous. Otherwise, the medium is heterogeneous. A more complete discussion of macroscopic properties and heterogeneities can be found in Refs. 1 through 3. The macroscopic scale is a natural one to use for core selection because attempts to model coreflood experiments or to estimate properties of the porous medium on the basis of measured flow data generally will use mathematical models that use macroscopic properties. A homogeneous core sample is necessary for the experimental determination of relative permeabilities from displacement experiments. Explicit methods for estimating relative permeabilities from displacement data are based on the permeabilities from displacement data are based on the Buckley-Leverett model, in which the core is assumed to be homogeneous. The absolute permeability generally is determined from a single-phase flow experiment and thus represents an average value for the entire core. If the core is not homogeneous, so that the absolute permeability takes on different values in different locations permeability takes on different values in different locations in the core, errors will appear in the relative permeability estimates. Although the magnitude of the errors will depend on many factors, a macroscopically homogeneous sample is always preferred. Note that heterogeneities may also be defined on a microscopic scale. A porous medium that is macroscopically homogeneous may be microscopically heterogeneous. In fact, this typically would be the case because few real porous media structures are microscopically homogeneous. In this paper, we develop a test for detecting the presence of macroscopic heterogeneities in core samples. presence of macroscopic heterogeneities in core samples. The test is conducted by displacing the fluid that initially saturates the porous medium with a second fluid that is immiscible with the displaced fluid. The pressure drop across the core is recorded up to the time of breakthrough of the displacing fluid. The test is based on the observation that, with a constant injection rate and incompressible fluids, the pressure drop will be linear with time provided that the core is homogeneous. It is also shown provided that the core is homogeneous. It is also shown that, if the porosity and permeability for a heterogeneous core may be approximated as functions of the longitudinal spatial dimension, the pressure drop will be linear with time provided that the region in which both fluid phases are flowing simultaneously has uniform properties. The detection of heterogeneities by this method is discussed and illustrated with analytical solutions for the displacement process and with laboratory experimental data. Theory We consider here a displacement experiment with two incompressible fluids. Initially, the core is saturated with one fluid and the other fluid is injected at one end. For example, if the core initially contains only oil or air, water might be injected at one end. The core could contain the irreducible saturation of the displacing fluid initially, although this is not experimentally convenient and is not necessary for conducting the test. The pressure drop across the core is recorded through the time of breakthrough of the displacing fluid at the core outlet. SPEJ P. 909


Author(s):  
Yelena I. Shtyrkova ◽  
Yelena I. Polyakova

The results of fossil diatoms investigation from the deltaic sediments are presented. Samples were obtained from the core DM-1 and two Holocene outcrops from the Damchik region of the Astrakhan Nature Reserve. In the core samples eight periods of sedimentation based on diatom analysis were identified: the sediments formed in shallow freshwater basins and deltaic channels. The samples from the outcrops were investigated in much greater detail.


Author(s):  
O. M. Makarova ◽  
N. I. Korobova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov

According to lithological and petrophysical data the core of the Bazhenov Formation, discovered in the central part of the Tundrin Basin, the structure of the section was characterized , productive oil intervals were identified, in which the collectors of pore and fissure-pore types are developed.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


Sign in / Sign up

Export Citation Format

Share Document