scholarly journals EVALUATION OF PROBITOIC POTENTIAL OF LACTOBACILLUS STRAINS FROM FERMENTED FOODS AND FEACES OF INFANTS

2016 ◽  
Vol 54 (5) ◽  
pp. 632
Author(s):  
Nguyen Thi My Le ◽  
Nguyen Thi Huong

Lactobacillus strains are a major part of the probiotics, microflora of the intestine and of fermented foods. The aim of this study was to evaluate the potential probiotics of six Lactobacillus strains (L. fermentum 39-183; L. plantarum subsp.plantarum P-8; L. casei ATCC 334; L. rhamnosus ATCC 8530, L. brevis KB 290 and L. fermentum JMC 7776). Probiotic properties such as acid tolerance, bile resistance, bacteriocin-like activity, cell surface hydrophobicity and antibiotic resistance were assessed. In vitro results obtained showed that all Lactobacillus strains tested were able to meet the basic requirements for probiotic functions as they demonstrated probiotic characteristics such as tolerance to pH 2.0 and 2% bile salt. All Lactobacillus strains inhibited the growth of E. coli, Staphylococcus aureus and Salmonella Typhi. Among strains tested, L. plantarum subsp.plantarum P-8 showing inhibitory is very promising with inhibition zone ranging between 6.5 to 12.7 mm. The results for cell surface hydrophobicity and susceptibility against antibiotics also showed that L. fermentum JMC 7776 and L. plantarum subsp.plantarum P-8 had higher cell surface hydrophobicity than the rests.  All Lactobacillus tested were resistant to vancomycin and susceptible to streptomycin. The results obtained in this investigation will be used to select potentially probiotic strains for in vivo study

1999 ◽  
Vol 62 (3) ◽  
pp. 252-256 ◽  
Author(s):  
C. GUSILS ◽  
A. PÉREZ CHAIA ◽  
S. GONZÁLEZ ◽  
G. OLIVER

Lactobacillus strains were tested for their in vitro probiotic properties. Cell surface hydrophobicity was found to be very high for Lactobacillus fermentum subsp. cellobiosus and Salmonella Gallinarum; high values could indicate a greater ability to adhere to epithelial cells. Studies on Lactobacillus animalis indicated relative cell surface hydrophobicities smaller than those of L. fermentum subsp. cellobiosus and L. fermentum. L. animalis and Enterococcus faecalis were able to coaggregate with L. fermentum subsp. cellobiosus and L. fermentum, respectively, but not with Salmonella Gallinarum. After mixed-culture studies for determining suitable growth behavior, the pair of strains L. animalis plus L. fermentum subsp. cellobiosus was selected for an attempted challenge against Salmonella Gallinarum. Double and triple mixed-culture studies indicated that selected lactobacillus strains were able to retain their beneficial characteristics in the presence of Salmonella Gallinarum such as presence of lectins, production of antimicrobial compounds, and ability to grow and compete. The selected microorganisms can be considered as potential ingredients for a chicken probiotic feed formulation intended to control salmonellosis and also improve poultry sanitation.


2019 ◽  
Vol 131 ◽  
pp. 01121
Author(s):  
Ruokun Yi ◽  
Fang Tan ◽  
Xin Zhao

In this study, 3 Lactobacillus strains isolated from 5 kinds of traditional fermented yogurt in Xinjiang were identified as Lactobacillus plantarum (LP1, LP2), and Lactobacillus delbrueckii subsp. Bulgaricus (LD). Probiotic properties of Lactobacillus strains have been evaluated by testing the tolerance to artificial gastric juice and bile salt, cell surface hydrophobicity, hydroxyl radicals and DPPH free radicals scavenging rates. As the results, LP1 showed better tolerance to acid, cell surface hydrophobicity and antioxidant ability, LP2 showed better tolerance to bile salt comparing with the other two LAB strains. LP1 showed the best probiotic properties in general. These results provide reference value for the probiotic research in vivo and the development of new functional probiotic products in the future.


Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


Author(s):  
A. M. Adisa ◽  
B. O. T. Ifesan ◽  
V. N. Enujiugha ◽  
A. B. Adepeju

Background: The term probiotics have been described as live microorganisms associated with fermented foods that confer health benefit to the host. For a long time, researches into the world of probiotics have extensively and predominantly centred upon species of lactic acid bacteria and until recently Saccharomyces cerevisiae, as the only well-defined and proven probiotic yeast strain. The purpose of this study was to isolate and characterise the yeast species associated with the fermentation of wholegrain millet sourdoughs and investigate in vitro the possible probiotic potential of the isolates. Methodology: Wholegrain millet sourdoughs were prepared by spontaneous fermentation of the flours with tap water in the ratio 1:1 (w/v) for 48 h at 28 ± 2ºC through backslopping. A total of twenty five yeasts were identified based on their cultural, morphological and biochemical characteristics. The selected isolates were characterized to species level using API 20 C AUX test identification kit. Probiotic properties examined included bile salt and acid tolerance under conditions simulating the human gastrointestinal tract (GIT) and positive antagonistic activity against selected pathogens following well established procedures. Results: The selected isolates investigated were characterized to belong to species of Saccharomyces and Kluveromyces. All of the isolates were discovered to exhibit sufficient survival under acidic pH of 2.0 with values ranging from 1.0log cfu ml-1 to 7.8log cfu ml-1 and showed high resistance to bile salt with values ranging from 63-99%. They also exhibited good antimicrobial activity against enteric pathogens of E. coli, Salmonella typhimurium, Staphylococcus aureus, Klebsiella pneumonia, Streptococcus pyogenes, Proteus vulgaris and Pseudomonas sp. Conclusion: Millet sourdoughs can serve as an affordable nutritionally healthy substrate for delivery of probiotics to the gastro-intestinal tract, thereby proffering basic health functionality. This study allowed to isolate and to identify yeast species present in millet sourdoughs with technological potential for sourdough applications.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 91
Author(s):  
Gabriela Krausova ◽  
Antonin Kana ◽  
Ivana Hyrslova ◽  
Iva Mrvikova ◽  
Miloslava Kavkova

Selenized lactic acid bacteria (LAB) represent potentially safe and effective sources of selenium (Se), essential for human health, as lactic acid fermentation improves Se bioavailability and reduces its toxicity. LAB are generally recognized as safe (GRAS) and widely used in fermented dairy products. To facilitate selenized LAB implementation as a functional food, we developed and characterized new Se-enriched strains based on the food industry commercial strains Streptococcus thermophilus CCDM 144 and Enterococcus faecium CCDM 922A as representatives of two LAB genera. We evaluated Se bioaccumulation capacity, Se biotransformation and growth ability in the presence of different sodium selenite concentrations (0–50 mg/L), and antioxidant properties (2, 2-diphenyl-1-picrylhydrazyl (DPPH) method) and cell surface hydrophobicity between Se-enriched and parental strains in vitro. Sodium selenite addition did not negatively influence growth of either strain; thus, 50 mg/L was chosen as the optimal concentration based on strain accumulation capacity. Selenization improved the antioxidant properties of both strains and significantly increased their cell surface hydrophobicity (p < 0.05). To our knowledge, this represents the first report of Se-enriched strain hydrophobicity as well as the first on Se speciation in families Enterococcaceae and Streptococcaceae. Moreover, both tested strains demonstrated good potential for Se-enrichment, providing a foundation for further in vitro and in vivo studies to confirm the suitability of these Se-enriched strains for industrial applications.


2019 ◽  
Author(s):  
Yuria Chihara ◽  
Yutaka Tanaka ◽  
Minoru Izumi ◽  
Daisuke Hagiwara ◽  
Akira Watanabe ◽  
...  

ABSTRACTThe pathogenic fungus Aspergillus fumigatus contains galactomannans localized on the surface layer of its cell walls, which are involved in various biological processes. Galactomannans comprise α-(1→2)-/α-(1→6)-mannan and β-(1→5)-/β-(1→6)-galactofuranosyl chains. We previously revealed that GfsA is a β-galactofuranoside β-(1→5)-galactofuranosyltransferase involved in the biosynthesis of β-(1→5)-galactofuranosyl chains. Here, we clarified the entire biosynthesis of β-(1→5)-galactofuranosyl chains in A. fumigatgus. Two paralogs exist within A. fumigatus: GfsB and GfsC. We show that GfsB and GfsC, in addition to GfsA, are β-galactofuranoside β-(1→5)-galactofuranosyltransferases by biochemical and genetic analyses. GfsA, GfsB, and GfsC can synthesize β-(1→5)-galactofuranosyl oligomers up to lengths of 7, 3, and 5 galactofuranoses within an established in vitro highly efficient assay of galactofuranosyltransferase activity. Structural analyses of galactomannans extracted from the strains ΔgfsB, ΔgfsC, ΔgfsAC, and ΔgfsABC revealed that GfsA and GfsC synthesized all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans, and GfsB exhibited limited function in A. fumigatus. The loss of β-(1→5)-galactofuranosyl residues decreased the hyphal growth rate and conidia formation ability as well as increased the abnormal hyphal branching structure and cell surface hydrophobicity, but this loss is dispensable for sensitivity to antifungal agents and virulence toward immune-compromised mice.IMPORTANCEβ-(1→5)-galactofuranosyl residues are widely distributed in the subphylum Pezisomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of β-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for their understanding. In this study, we show that GfsA and GfsC are responsible for the biosynthesis of all β-(1→5)-galactofuranosyl residues of fungal-type and O-mannose-type galactomannans. The data presented here indicates that β-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of β-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the subphylum Pezisomycotina.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Tokatlı ◽  
Gökşen Gülgör ◽  
Simel Bağder Elmacı ◽  
Nurdan Arslankoz İşleyen ◽  
Filiz Özçelik

The suitable properties of potential probiotic lactic acid bacteria (LAB) strains (preselected among 153 strains on the basis of their potential technological properties) isolated from traditional Çubuk pickles were examinedin vitro. For this purpose, these strains (21Lactobacillus plantarum, 11Pediococcus ethanolidurans,and 7Lactobacillus brevis) were tested for the ability to survive at pH 2.5, resistance to bile salts, viability in the presence of pepsin-pancreatin, ability to deconjugate bile salts, cholesterol assimilation, and surface hydrophobicity properties. Most of the properties tested could be assumed to be strain-dependent. However,L. plantarumandL. brevisspecies were found to possess desirable probiotic properties to a greater extent compared toP. ethanolidurans. In contrast toP. ethanoliduransstrains, the testedL. plantarumandL. brevisstrains exhibited bile salt tolerance, albeit to different extent. All tested strains showed less resistance to intestinal conditions than gastric juice environment. Based on the survival under gastrointestinal conditions, 22 of the 39 strains were selected for further characterization. The eight strains having the highest cholesterol assimilation and surface hydrophobicity ratios could be taken as promising probiotic candidates for furtherin vivostudies, because of the strongest variations found among the tested strains with regard to these properties.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Engy Elekhnawy ◽  
Walaa A. Negm ◽  
Mona El-Aasr ◽  
Amal Abo Kamer ◽  
Mohammed Alqarni ◽  
...  

AbstractPseudomonas aeruginosa is an opportunistic bacterium causing several health problems and having many virulence factors like biofilm formation on different surfaces. There is a significant need to develop new antimicrobials due to the spreading resistance to the commonly used antibiotics, partly attributed to biofilm formation. Consequently, this study aimed to investigate the anti-biofilm and anti-quorum sensing activities of Dioon spinulosum, Dyer Ex Eichler extract (DSE), against Pseudomonas aeruginosa clinical isolates. DSE exhibited a reduction in the biofilm formation by P. aeruginosa isolates both in vitro and in vivo rat models. It also resulted in a decrease in cell surface hydrophobicity and exopolysaccharide quantity of P. aeruginosa isolates. Both bright field and scanning electron microscopes provided evidence for the inhibiting ability of DSE on biofilm formation. Moreover, it reduced violacein production by Chromobacterium violaceum (ATCC 12,472). It decreased the relative expression of 4 quorum sensing genes (lasI, lasR, rhlI, rhlR) and the biofilm gene (ndvB) using qRT-PCR. Furthermore, DSE presented a cytotoxic activity with IC50 of 4.36 ± 0.52 µg/ml against human skin fibroblast cell lines. For the first time, this study reports that DSE is a promising resource of anti-biofilm and anti-quorum sensing agents.


Sign in / Sign up

Export Citation Format

Share Document