scholarly journals Equations of dynamic and static problems of nonhomogeneous and anisotropic elastic layered-composite plates

1996 ◽  
Vol 18 (2) ◽  
pp. 35-42
Author(s):  
Pham Thi Toan

The homogenization method for studying composite materials had been introduced in [1]. By this method the problem of nonhomogeneous and anisotropic elastic layered w composite material reduces to the set of problems of homogeneous, anisotropic elastic material. In this paper the governing equations of dynamic and static problems of layered - composite plates are formulated. An example is considered, obtained results can be compared with ones of multi-layered plate method.

1994 ◽  
Vol 16 (4) ◽  
pp. 1-10
Author(s):  
Dao Huy Bich

Using the homogenization method problems of nonhomogeneous and anisotropic elastic layer composite plates reduce to the problems of homogeneous and anisotropic elastic plates. The formulae of effective modulus theory determining material behaviors in this cases are given and can be checked by experimental data. Obtained results allow to analyze static and dynamic problems of composite plates by well - know methods.


2021 ◽  
Vol 1022 ◽  
pp. 152-158
Author(s):  
Vitaly Evdokimovich Rogov ◽  
Anna S. Chermoshentseva

In all industries, composite materials with a multilayer structure are widely used. Each layer of the composite material is a directional fiber impregnated with a binder polymer. Layered composite materials, possessing unique properties and high manufacturability, have a significant drawback - the presence of interlayer defects in material, which reduces the scope of their application. One of the perspective directions for reducing the process of interlayer fracture in composite materials is the use of bulk textile material, which is the reinforcement of the entire multilayer material. This article presents an overview of some researches that provide basic information about the creation of perspective composite material made of volume fabric and materials based on them. We provided open information about manufacturers of 3D fabric materials. We carried out experimental tests with composite materials, which showed that material with transverse threads is 30-35% stronger during end impact than a composite material without reinforcement.


2021 ◽  
Vol 1040 ◽  
pp. 124-131
Author(s):  
Ljubov Aleksandrovna Bokhoeva ◽  
I.O. Bobarika ◽  
A.B. Baldanov ◽  
Vitaly Evdokimovich Rogov ◽  
Anna S. Chermoshentseva

Due to the intensive development of composite materials and technologies for producing parts from them, they are increasingly used in various industries, including the manufacture of products with increased requirements for the characteristics of final products (strength, stiffness, minimum weight, etc.). In this regard, the authors analyzed the possibility to optimize the layered structure of a composite material in order to give it a pronounced predictable anisotropy of properties required for the final product. Thus, the influence of the orientation of the fibers of the reinforcing material in different layers of the package and the number of layers of the package on the physical and mechanical characteristics of the hypothetical product were analyzed. The problem was solved through the example of the development of a wing for a hypothetical UAV.


2019 ◽  
Vol 97 ◽  
pp. 02027
Author(s):  
Tatiana Bobyleva ◽  
Alexey Shamaev

Composite materials consisting of several phases are widely used in modern construction. Numerous experiments have shown that the properties of structurally heterogeneous materials can differ significantly from those of the individual components making up the composition. Besides, rapidly changing coefficients of differential equations describing such composite materials greatly complicate the solution of boundary value problems even with the help of computer calculation methods. Therefore, the homogenization method is used. In this paper the two approaches propose to obtain in explicit analytical form the effective model of the problem of loading a heterogeneous pipe made of layered material, provided that the elastic properties of the material depend only on the distance from the center of the section of the pipe. We point to a method that obviously leads to an analytical result. It follows from the article that it is possible to choose the function that determines the structure of the “winding” in such a way as to obtain the stiffness characteristics of the pipe as close as possible to the desired with fixed mass fractions of the materials used. A similar approach can be applied to the study of creep properties of pipes made of composite materials.


Author(s):  
V.V. Ovchinnikov ◽  
S.V. Yakutina ◽  
I.A. Kurbatova ◽  
E.V. Luk’yanenko

The properties and structure of the joints of the layered composite material based on aluminum alloys 1570— 1915—1570, made by resistance spot welding, automatic argon arc welding and friction stir welding are presented. The spot, lap and butt joints are made. The strength of the joints made by automatic argon arc welding with the AMg63 fi lling wire was 333...377 MPa at 180° bend angle. The butt joints obtained by the friction stir welding have strength factor of 0.90...0.92 from the strength of the base metal.


2019 ◽  
Vol 19 (06) ◽  
pp. 1950057 ◽  
Author(s):  
Xiangying Guo ◽  
Pan Jiang ◽  
Wenhan Yan ◽  
Siu-Kai Lai ◽  
Wei Zhang

This paper presents an investigation on the nonlinear dynamic behavior of three-phase rectangular composite plates made of cross-ply macro fiber composites (MFC) in the polymer with graphene (GP) skins, which are uniformly dispersed at the top and bottom surfaces of the plates. According to the mixture rules for multi-components of composite materials, the constitutive laws for MFC-GP composite materials can be obtained. A simply-supported rectangular plate model subjected to a transversal excitation in thermal environments is considered. The governing equations are formulated by using the first-order shear deformation theory, von Kármán geometrical kinematics and Hamilton’s principle. The Galerkin approach is used to discretize the governing equations for analysis. The vibration frequencies of MFC-GP composite plates with different modes are presented and the case of 1:2 internal resonance is selected to be investigated here. Three different coupled forms (i.e. uncoupled, weakly coupled and strongly coupled cases) of two vibration modes are presented. In addition, the influences of various parameters, including volume fraction of graphene, applied voltage, temperature effect and external excitation, on the nonlinear dynamic characteristics of MFC-GP composite plates are also examined.


2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


Author(s):  
Jiyuan Fan ◽  
Chengkun Xiao ◽  
Jinlin Mei ◽  
Cong Liu ◽  
Aijun Duan ◽  
...  

CoMo series catalysts based on ZSM-22/PHTS (ZP) composite materials with different SiO2/Al2O3 molar ratios were prepared via the impregnation method. The properties of the ZP material and the corresponding catalysts...


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Sign in / Sign up

Export Citation Format

Share Document