scholarly journals EXTRACTION OF LIGNIN FROM SUGARCANE BAGASSE BY DEEP EUTECTIC SOLVENTS (DESs)

2019 ◽  
Vol 57 (3A) ◽  
pp. 134
Author(s):  
Bui Thi Thao Nguyen ◽  
Nguyen Nhi Tru ◽  
Thai Ngoc Minh Hoang ◽  
Nguyen Hoang Duong ◽  
Tran Manh Cuong

Lignin plays a crucial role as a structural material of plant cell walls and is also known as a significant renewable resource that has the potential to be a raw material for producing high value chemicals. The article aimed to research on the extraction of lignin from sugarcane bagasse by environmental method using deep eutectic solvents (DESs) containing choline chloride and formic acid. In the process, lignins dissolved in DESs were isolated from the solution by dilution with water and ethanol. The obtained lignin samples were characterized with UV - Vis (Ultraviolet – visible spectroscopy), FT-IR (Fourier-transform infrared spectroscopy), GPC (Gel permeation chromatography), and 1H-NMR (Proton nuclear magnetic resonance). The initial results showed that the extracted lignin obtained adequately distinct functional groups and the weight average molecular mass of the lignin was about 28265 g/mol.

2019 ◽  
Vol 21 (4) ◽  
pp. 897-906 ◽  
Author(s):  
Lei Zhou ◽  
Xingmei Lu ◽  
Zhaoyang Ju ◽  
Bo Liu ◽  
Haoyu Yao ◽  
...  

To prepare DOTP more cheaply and efficiently, PET was used as a raw material and a ChCl-based DES was synthesized as a catalyst.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Shuqiang Zhu ◽  
Dongling Liu ◽  
Xinyue Zhu ◽  
Along Su ◽  
Haixia Zhang

Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods.


Holzforschung ◽  
2016 ◽  
Vol 70 (4) ◽  
pp. 297-304 ◽  
Author(s):  
Nanlong Hong ◽  
Wei Yu ◽  
Yuyuan Xue ◽  
Weimei Zeng ◽  
Jinhao Huang ◽  
...  

Abstract A new family of water-soluble lignosulfonate polymers with ultrahigh molecular weight (Mw) was developed based on alkali lignin (AL) as starting material in a one-pot reaction in two steps: sulfomethylation of AL as raw material led to AL-S and this material was subsequently cross-linked via alkylation with 1,6-dibromohexane (alkAL-S). Gel permeation chromatography showed a significant increase of Mw from 5200 Da of AL-S to 201 000 Da of alkAL-S with high degree of alkylation. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy and functional group analysis confirmed the efficient polymerization by a nucleophilic substitution reaction mechanism. Additionally, alkAL-S with high Mw showed unexpected viscosity-reducing effect, stability and good rheological properties on a low-rank coal-water slurry (CWS), which are even better than those obtained by naphthalene sulfonate formaldehyde (NSF) as additive. The adsorption properties of the new products were also characterized via a quartz crystal microbalance combined with dissipation monitoring (QCM-D method). Cross-linked structure, large steric hindrance from high Mw and suitable amphiphilic properties of alkAL-S polymers contribute together to the highly improved dispersion performances for CWS.


2012 ◽  
Vol 550-553 ◽  
pp. 3299-3304
Author(s):  
Li Bin Dong ◽  
Yu Liu

The Chinese poplar was used as the raw material in this study. Conversational Soda-AQ cooking was carried out. The acid-precipitating method was used to separate the dissolved lignin from the black liquor. The FT-IR spectra was quantitatively analyzed and compared in order to discover the change of lignin structures. The lignin 31P—NMR spectra of pH6 lignin samples was obtained and the functional groups of the lignin was quantitatively analyzed and compared in order to discover the change of lignin structures during Soda-AQ cooking. Syrinl-OH was 50~60 percent, Guaiacyl-OH was 40~50 percent. The pH6 lignin samples of 31P-NMR spectra aliphatic OH was 5.93 m mol/g, COOH was 0.99 m mol/g, total phenolic OH 7.07 m mol/g. The molecular weight distribution curves of lignin samples obtained from gel permeation chromatography analysis system was shown that Mw was 1506g/mol, Mn was 2888 g/mol and polydispersity was 5257 g/mol.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Fang Bai ◽  
Chao Hua ◽  
Jing Li

The separation of benzene and cyclohexane azeotrope is one of the most challenging processes in the petrochemical industry. In this paper, deep eutectic solvents (DES) were used as solvents for the separation of benzene and cyclohexane. DES1 (1:2 mix of tetrabutylammonium bromide (TBAB) and levulinic acid (LA)), DES2 (1:2 mix of TBAB and ethylene glycol (EG)) and DES3 (1:2 mix of ChCl (choline chloride) and LA) were used as entrainers, and vapor-liquid equilibrium (VLE) measurements at atmospheric pressure revealed that a DES comprised of a 2:1 ratio of LA and TBAB could break this azeotrope with relative volatility (αij) up to 4.763. Correlation index suggested that the NRTL modelling approach fitted the experimental data very well. Mechanism of extractive distillation gained from FT-IR revealed that with hydrogen bonding and π–π bond interactions between levulinic acid and benzene could be responsible for the ability of this entrainer to break the azeotrope.


Author(s):  
Ashraf Ashmawy ◽  
El-Sayed Elnaggar ◽  
Manal Mohamed ◽  
Mohamed Hamam

The deposition of paraffin wax from crude oil at low temperatures due to wax deposition, high pour point, high viscosity, and weak flow capability is among the critical and persisting challenges faced by the petroleum industry. In this study, a new para-decyloxy allyl benzoate (I10) was prepared, polymerized into HI10, and copolymerized with dioctadecyl maleate into MHI10 via the free-radical polymerization method employing azobisisobutyronitrile and toluene as the initiator and solvent, respectively. The prepared monomer was characterized by spectroscopic analyses (Fourier-transform infrared (FT-IR)) and proton nuclear magnetic resonance. Further, the polymers were characterized by FT-IR, and their average molecular weights were determined by gel permeation chromatography. The prepared compounds were taken in different concentrations and then tested as flow improvers of Qarun waxy crude oil using pour point depression and rheological parameters. The results of this test indicated that MHI10 exerted the highest effect on pour point reduction and the rheological parameters (yield value and apparent viscosity). Moreover, an increase in the efficiency of the additives was observed after increasing their concentration from 1000 to 5000 ppm.


2011 ◽  
Vol 264-265 ◽  
pp. 565-570 ◽  
Author(s):  
N. Prasoetsopha ◽  
Pranee Chumsamrong ◽  
Nitinat Suppakarn

Highly crosslinked epoxy resin for engineering applications is normally stiff but brittle. Therefore, many attempts have been made to improve its toughness. Nowadays, several studies have been done on toughening epoxy resin using natural rubber (NR) because it is abundant and comes from renewable resource. In the present work, NR was subjected to depolymerize in order to achieve molecular dispersion of NR in epoxy matrix. Depolymerized natural rubber (DNR) was prepared by adding a carbonyl compound to natural rubber latex solution and subjecting the mixture to air oxidation in the presence of a radical forming agent at 70°C. In addition, the interfacial adhesion between rubber and matrix must be present to achieve a significant increase in toughness. Hence, DNR was further functionalized by grafting with monomer mixture of methyl methacrylate (MMA)/glycidyl methacrylate (GMA) (90/10 wt/wt%) in an amount of 50% based on rubber content. Solution polymerization was used to graft such monomers using 2 hours reaction times at a reaction temperature of 80oC. Two types of initiator used were benzoyl peroxide (BPO) and azo-bisisobutyronitrile (AIBN). The amounts of initiator in the grafting process were 1, 2, and 3 parts per hundred of DNR. Effects of type and concentration of initiator on grafting efficiency of MMA/GMA monomer mixture onto depolymerized natural rubber were studied by proton nuclear magnetic resonance (1H-NMR) analysis. The molecular weight of DNR was characterized by gel permeation chromatography (GPC). The results indicated good evidence for the formation of graft co-polymers in the presence of both initiators, AIBN or BPO. However, the amounts of grafted MMA/GMA on DNR backbone using BPO was higher than those on DNR backbone using AIBN.


2011 ◽  
Vol 299-300 ◽  
pp. 747-750
Author(s):  
Li Hong Zhao ◽  
Hong Jun Sun

The physico-chemical characterization of two types of alkali lignin from different origin, namely L1 and L2, were studied by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectrometry (1H NMR) and gel permeation chromatography (GPC) analysis. FT-IR spectra show that they have the characteristics of absorption peaks of syringyl and guaiacyl. 1H NMR spectra indicate that acetylated L1 exhibits higher content of aromatic protons than L2, as the former is mainly composed by G units. L2 presents high quantities of methoxyl groups. GPC results show that L1 has much higher weight average than L2. They had similar functional groups, however, there were differences in the relative contents of functional groups.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Khaleghipour ◽  
Javier A. Linares-Pastén ◽  
Hamid Rashedi ◽  
Seyed Omid Ranaei Siadat ◽  
Andrius Jasilionis ◽  
...  

AbstractSugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.25, 0.5, or 1 M), 121 °C (1 bar), 30 and 60 min; (2) 3 × repeated extraction cycles in NaOH (1 or 2 M), 121 °C (1 bar), 30 and 60 min or (3) pressurized liquid extractions (PLE), 100 bar, at low alkalinity (0–0.1 M NaOH) in the time and temperature range 10–30 min and 50–150 °C. Higher concentration of alkali (2 M NaOH) increased the xylan yield and resulted in higher apparent molecular weight of the xylan polymer (212 kDa using 1 and 2 M NaOH, vs 47 kDa using 0.5 M NaOH), but decreased the substituent sugar content. Repeated extraction at 2 M NaOH, 121 °C, 60 min solubilized both xylan (85.6% of the SCB xylan), and lignin (84.1% of the lignin), and left cellulose of high purity (95.8%) in the residuals. Solubilized xylan was separated from lignin by precipitation, and a polymer with β-1,4-linked xylose backbone substituted by arabinose and glucuronic acids was confirmed by FT-IR and monosaccharide analysis. XOS yield in subsequent hydrolysis by endo-xylanases (from glycoside hydrolase family 10 or 11) was dependent on extraction conditions, and was highest using xylan extracted by 0.5 M NaOH, (42.3%, using Xyn10A from Bacillus halodurans), with xylobiose and xylotriose as main products. The present study shows successful separation of SCB xylan, lignin, and cellulose. High concentration of alkali, resulted in xylan with lower degree of substitution (especially reduced arabinosylation), while high pressure (using PLE), released more lignin than xylan. Enzymatic hydrolysis was more efficient using xylan extracted at lower alkaline strength and less efficient using xylan obtained by PLE and 2 M NaOH, which may be a consequence of polymer aggregation, via remaining lignin interactions.


Author(s):  
Anna Fajdek-Bieda ◽  
Agnieszka Wróblewska ◽  
Piotr Miądlicki ◽  
Jadwiga Tołpa ◽  
Beata Michalkiewicz

AbstractThis work presented the studies with the natural zeolite—clinoptilolite as the catalyst for the isomerization of geraniol. During the research, it turned out that the studied process is much more complicated, and not only isomerization takes place in it, but also dehydration, oxidation, dimerization, cyclization and fragmentation of the carbon chain. Geraniol is an organic raw material which can be obtained not only by a chemical synthesis but also from plants (renewable biomass) by distillation or extraction method, for example a source of geraniol can be a plant—geranium. Before catalytic tests clinoptilolite was characterized by the instrumental methods, such as: XRD, porosity studies—nitrogen adsorption at 77 K, SEM, EDXRF, and FT-IR. Gas chromatography analyses showed that the main products of geraniol isomerization process were 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol. The selectivity of 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol depended on the temperature, catalyst content and reaction time. These parameters were changed in the following ranges: 80–150 °C (temperature), 5–15 wt% (catalyst content) and 15–1440 min. (reaction time). The most favorable conditions for 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol obtaining were: temperature 140 ºC, catalyst content 12.5 wt% and reaction time 180 min. At these conditions, the conversion of geraniol amounted to 98 mol%, and the selectivities of 6,11-dimethyl-2,6,10-dodecatrien-1-ol and thumbergol amounted to 14 and 47 mol%, respectively.


Sign in / Sign up

Export Citation Format

Share Document