Cell Culture-Based Tissue Engineering as an Alternative to Bone Grafts in Implant Dentistry: A Literature Review

2012 ◽  
pp. 120416093634003
Author(s):  
daniel goncalves boeckel ◽  
Rosemary Sadami Arai Shinkai ◽  
Marcio Lima Grossi ◽  
Eduardo Rolim Teixeira
2012 ◽  
Vol 38 (S1) ◽  
pp. 538-545 ◽  
Author(s):  
Daniel Gonçalves Boeckel ◽  
Rosemary Sadami Arai Shinkai ◽  
Márcio Lima Grossi ◽  
Eduardo Rolim Teixeira

Several biomaterials and techniques for bone grafting have been described in the literature for atresic bone tissue replacement caused by edentulism, surgical resectioning, and traumas. A new technique involves tissue engineering, a promising option to replace bone tissue and solve problems associated with morbidity of autogenous grafting. This literature review aims to describe tissue-engineering techniques using ex vivo cell culture as an alternative to repair bone maxillary atresias and discuss the concepts and potentials of bone regeneration through cell culture techniques as an option for restorative maxillofacial surgery.


2020 ◽  
Vol 8 (11) ◽  
pp. 609-615
Author(s):  
Puvvadi Kalyani ◽  
◽  
Kavitha Janardanan ◽  
Harsha Kumar K ◽  
R. Ravichandran ◽  
...  

Objective: To collect and conclude a literature review on the applications of tissue engineering in oral and maxillofacial rehabilitation Materials and Methods: The review was searched and collected from many sources about tissue engineering. The database of Literature was collected through the search of PubMed, Google scholar and Researchgate databases. The keywords used for the search were tissue engineering, dental applications, prosthodontics, implant dentistry and craniofacial rehabilitation. A manual search to many of the reference lists of the identified articles and the authors article files and recent reviews was made to find additional publications. Those studies that showed new features about tissue engineering were included in this review. Results: In total 28 literature sources were searched and reviewed. Studies that described new features about elements and strategies of tissue engineering and its applications were included. Conclusion: We summarized in this study the key elements and strategies of tissue engineering and its applications in oral and maxillofacial rehabilitation.


2011 ◽  
Vol 17 (21-22) ◽  
pp. 2583-2592 ◽  
Author(s):  
Jessica A. DeQuach ◽  
Shauna H. Yuan ◽  
Lawrence S.B. Goldstein ◽  
Karen L. Christman

2001 ◽  
Vol 25 (3) ◽  
pp. 213-217 ◽  
Author(s):  
Hiroshi Itoh ◽  
Yu Aso ◽  
Masayasu Furuse ◽  
Yasuharu Noishiki ◽  
Teruo Miyata

Applied Nano ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 118-127
Author(s):  
Luca Zoia ◽  
Anna Binda ◽  
Laura Cipolla ◽  
Ilaria Rivolta ◽  
Barbara La Ferla

Binary nano-biocomposite 3D scaffolds of cellulose nanocrystals (CNCs)—gelatine were fabricated without using chemical crosslinking additives. Controlled oxidative treatment allowed introducing carboxyl or carbonyl functionalities on the surface of CNCs responsible for the crosslinking of gelatine polymers. The obtained composites were characterized for their physical-chemical properties. Their biocompatibility towards different cell cultures was evaluated through MTT and LDH assays, cellular adhesion and proliferation experiments. Gelatine composites reinforced with carbonyl-modified CNCs showed the most performing swelling/degradation profile and the most promising adhesion and proliferation properties towards cell lines, suggesting their potential application in the field of tissue engineering.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1061 ◽  
Author(s):  
Liying Li ◽  
Kedong Song ◽  
Yongzhi Chen ◽  
Yiwei Wang ◽  
Fangxin Shi ◽  
...  

Nowadays, microcarriers are widely utilized in drug delivery, defect filling, and cell culture. Also, many researchers focus on the combination of synthetic and natural polymers and bioactive ceramics to prepare composite biomaterials for tissue engineering and regeneration. In this study, three kinds of microcarriers were prepared based on physical doping and surface modification, named Poly (l-lactic) acid (PLLA), PLLA/nanohydroxyapatite (PLLA/nHA), and PLLA/nHA/Chitosan (PLLA/nHA/Ch). The physicochemical properties of the microcarriers and their functional performances in MC3T3-E1 cell culture were compared. Statistical results showed that the average diameter of PLLA microcarriers was 291.9 ± 30.7 μm, and that of PLLA/nHA and PLLA/nHA/Ch microcarriers decreased to 275.7 ± 30.6 μm and 269.4 ± 26.3 μm, respectively. The surface roughness and protein adsorption of microcarriers were enhanced with the doping of nHA and coating of chitosan. The cell-carrier cultivation stated that the PLLA/nHA microcarriers had the greatest proliferation-promoting effect, while the PLLA/nHA/Ch microcarriers performed the strongest attachment with MC3T3-E1 cells. Besides, the cells on the PLLA/nHA/Ch microcarriers exhibited optimal osteogenic expression. Generally, chitosan was found to improve microcarriers with superior characteristics in cell adhesion and differentiation, and nanohydroxyapatite was beneficial for microcarriers regarding sphericity and cell proliferation. Overall, the modified microcarriers may be considered as a promising tool for bone tissue engineering.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Anwarul Hasan ◽  
Md Nurunnabi ◽  
Mahboob Morshed ◽  
Arghya Paul ◽  
Alessandro Polini ◽  
...  

Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document