Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits

2016 ◽  
Vol 42 (6) ◽  
pp. 469-476 ◽  
Author(s):  
Eugenio Velasco ◽  
Loreto Monsalve-Guil ◽  
Alvaro Jimenez ◽  
Iván Ortiz ◽  
Jesús Moreno-Muñoz ◽  
...  

This study focuses on the fatigue behavior and bone-implant attachment for the more usual surfaces of the different CP-titanium dental implants. The implants studied were: as-received (CTR), acid etching (AE), spark-anodization (SA), and with a grit-blasted surface (GB). Residual stresses were determined by means of X-ray diffraction. The fatigue tests were carried out at 37°C on 160 dental implants, and the stress-failure (S-N) curve was determined. The fatigue tests showed that the grit-blasting process improved fatigue life. This is a consequence of the layer of compressive residual stresses that the treatment generates in titanium surfaces. Further, our aim was to assess and compare the short- and midterm bone regenerative potential and mechanical retention of the implants in bone of New Zealand rabbits. The mechanical retention after 4 and 10 weeks of implantation was evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. The results demonstrated that the GB treatment produced microrough that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. The GB surface produced an improvement in mechanical long-time behavior and improved bone growth. These types of treated implants can have great potential in clinical applications, as evidenced by the outcomes of the current study.

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1083
Author(s):  
Christoph Breuner ◽  
Stefan Guth ◽  
Elias Gall ◽  
Radosław Swadźba ◽  
Jens Gibmeier ◽  
...  

One possibility to improve the fatigue life and strength of metallic materials is shot peening. However, at elevated temperatures, the induced residual stresses may relax. To investigate the influence of shot peening on high-temperature fatigue behavior, isothermal fatigue tests were conducted on shot-peened and untreated samples of gamma TiAl 48-2-2 at 750 °C in air. The shot-peened material was characterized using EBSD, microhardness, and residual stress analyses. Shot peening leads to a significant increase in surface hardness and high compressive residual stresses near the surface. Both effects may have a positive influence on lifetime. However, it also leads to surface notches and tensile residual stresses in the bulk material with a negative impact on cyclic lifetime. During fully reversed uniaxial tension-compression fatigue tests (R = −1) at a stress amplitude of 260 MPa, the positive effects dominate, and the fatigue lifetime increases. At a lower stress amplitude of 230 MPa, the negative effect of internal tensile residual stresses dominates, and the lifetime decreases. Shot peening leads to a transition from surface to volume crack initiation if the surface is not damaged by the shots.


2019 ◽  
Vol 817 ◽  
pp. 594-601 ◽  
Author(s):  
Alessandro Grazzini ◽  
Giuseppe Lacidogna

The safety work of historical and monumental building heritage requires the use of innovative materials compatible with the high architectural value. The Fiber Reinforced Polymers (FRP) represent a valid alternative to traditional ones, and the carbon fiber sheets are very light and easy to glue to the masonry structures. However, the durability of the application of FRP sheets is still uncertain in the long time behavior, especially with regard to cyclic fatigue loads such as seismic ones. In this work an experimental analysis on a set of strengthened masonry walls under fatigue tests (loading and freezing-thawing test) has been carried out in order to evaluate creep effects. During cyclic tests in the laboratory it was possible to monitor the damage pattern through the acoustic emission (AE) technique. The AE monitoring is useful to estimate the amount of energy released from fracture propagation in the adherence surface between masonry and FRP sheet. The different phases of damage evolution are recognized through the analysis of AE data over time. In particular, the time dependence of AE counting number is useful to indicate the beginning of the unstable damage growth and predicts the possible failure of the specimens at the 80% of the test duration. Furthermore, a sudden decay in the AE frequency is detected during the last phase of the fatigue tests. These results illustrate the applicability and the advantages of AE technique for the monitoring of long-term damage growth in strengthened masonry.


2004 ◽  
Vol 126 (2) ◽  
pp. 380-385 ◽  
Author(s):  
Douglas W. Van Citters ◽  
Francis E. Kennedy ◽  
John H. Currier ◽  
John P. Collier ◽  
Thomas D. Nichols

Total joint replacements traditionally employ ultra high molecular weight polyethylene (UHMWPE) as a bearing material due to its desirable material properties and biocompatibility. Failure of these polyethylene bearings can lead to expensive and risky revision surgery, necessitating a better understanding of UHMWPE’s tribological properties. A six-station rolling/sliding machine was developed to study the behavior of accelerated-aged UHMWPE in cylinder-on-cylinder contact. The normal load and sliding/rolling ratio in the oscillatory contacts can be controlled separately for each test station, as can the liquid test environment. Fatigue tests were run on the machine with UHMWPE versus cobalt-chrome cylinders in a distilled water environment at normal contact pressures of approximately 20 MPa. All specimens failed by subsurface cracking during tribotesting on the machine, and the failures were similar to those that occur in-vivo. The fatigue behavior of the polymer was analyzed to determine its relationship to oxidation and stress state in the rolling/sliding cylinder. At the 20 MPa test load, the number of cycles to fatigue failure by subsurface cracking was inversely proportional to the oxidation level. Analysis of the stress levels through the bulk of the polyethylene specimens and their relationship to the material properties provide insight as to why cracks initiate and propagate subsurface.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 728 ◽  
Author(s):  
Enrico Troiani ◽  
Nicola Zavatta

Laser shock peening has established itself as an effective surface treatment to enhance the fatigue properties of metallic materials. Although a number of works have dealt with the formation of residual stresses, and their consequent effects on the fatigue behavior, the influence of material geometry on the peening process has not been widely addressed. In this paper, Laser Peening without Coating (LPwC) is applied at the surface of a notch in specimens made of a 6082-T6 aluminum alloy. The treated specimens are tested by three-point bending fatigue tests, and their fatigue life is compared to that of untreated samples with an identical geometry. The fatigue life of the treated specimens is found to be 1.7 to 3.3 times longer. Brinell hardness measurements evidence an increase in the surface hardness of about 50%, following the treatment. The material response to peening is modelled by a finite element model, and the compressive residual stresses are computed accordingly. Stresses as high as −210 MPa are present at the notch. The ratio between the notch curvature and the laser spot radius is proposed as a parameter to evaluate the influence of the notch.


2002 ◽  
Vol 16 (01n02) ◽  
pp. 181-188 ◽  
Author(s):  
CHANG-MIN SUH ◽  
BYUNG-WON HWANG ◽  
KYUNG-RYUL KIM

To evaluate the effect of coatings on the fatigue behaviors of turbine rotor steel, TiN and TiAlN films were deposited on the 1Cr-1Mo-0.25V steels by arc-ion plating (AIP) method with and wihtout screen ion filter. The coating thickness were varied with 2.5 μm, 3.5 μm, and 5.0 μm. A Cu-K α beam source was used as a characteristic X-ray and the crystal plane of (422) was selected to evaluate the residual stresses. In order to clear the relationship between fatigue behavior and residual stress of specimen coated with TiN and TiAlN films, the fatigue tests of specimens with and without coating were carried out at room temperatures respectively. It is shown that the fatigue life of the coated specimen was longer than that of uncoated specimen. The compressive residual stresses on the coatings were higher, and the fatigue crack initiated at an inclusion in the substrate near bond interface. It is known that compressive residual stress caused by hard coating would retard the fatigue crack initiation on the specimen surface, and then led to fatigue strength and fatigue life increasing.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7076
Author(s):  
Christian Flörke ◽  
Anne-Katrin Eisenbeiß ◽  
Ulla Metz ◽  
Aydin Gülses ◽  
Yahya Acil ◽  
...  

Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.


1991 ◽  
Vol 113 (2) ◽  
pp. 341-344 ◽  
Author(s):  
Z. F. Sang ◽  
Y. Z. Zhu ◽  
G. E. O. Widera

In order to study the fatigue behavior of expanded tube-to-tubesheet joints for steam generators and tubular heat exchangers under cyclical loading, both static and fatigue tests were performed. As a result of the sticking interface which is formed between the tube and tubesheet hole, it is shown that: 1) the expanded joint of tube-tubesheet interface is not sensitive to cyclic loads, 2) the fatigue strength of the expanded joint is higher than that of the tube materials, and 3) cyclic loads have no obvious effect on the static pull-out strength.


1992 ◽  
Vol 114 (1) ◽  
pp. 27-33 ◽  
Author(s):  
S. M. Tipton ◽  
G. J. Shoup

Open link lifting chain is routinely proof loaded during manufacture. However, the effect of residual stresses imposed by this operation on the fatigue strength of the chain has not been quantitatively investigated. This paper discusses the results of constant amplitude fatigue tests on open link chain segments which have received proof loading at various levels. The chain was initially heat treated to relieve manufacturing residual stresses and then proof loaded at levels ranging from 0 to 82 percent of its break strength. Tests were performed at two different mean loads and four different load amplitudes. Failure site trends are noted as a function of applied loading and are correlated with results of a finite element stress analysis. Residual stresses are estimated using strains measured from strain gages placed at critical locations on individual links during the proof load operation. Residual stress estimates are used with standard fatigue damage parameters to estimate the fatigue life of the chain and predictions are compared to data. Proof loading was shown to substantially increase the fatigue life of the chain. Residual stresses can explain the increase in fatigue life. Neuber’s rule demonstrated the ability to model the data trends.


2021 ◽  
Vol 20 (3) ◽  
pp. 156-160
Author(s):  
CARLOS RODRIGO DE MELLO ROESLER ◽  
RÔMULO PEDROZA PINHEIRO ◽  
ANDRÉ LUÍS ALMEIDA PIZZOLATTI ◽  
VALERIA ROMERO ◽  
HELTON LUIZ APARECIDO DEFINO

ABSTRACT Objective Evaluate and compare the mechanical resistance and the fatigue behavior associated with the use of three different modalities of vertebral fixation system rod connectors through in vitro pre-clinical mechanical tests developed specifically for this application (linear, lateral with square connector and lateral with oblique connector). Methods Cobalt chromium rods 5.5 mm in diameter were used and coupled with three types of connectors: a) side rod with oblique connector, b) side rod with square connector, and c) rod and linear connectors. Quasi-static mechanical four-point bending and fatigue tests were performed. The variables measured were (I) the bending moment at the yield limit, (II) the displacement at the yield limit, (III) the rigidity of the system in flexion and (IV) the number of cycles until system failure. Results The linear system presented the greatest force and the greatest moment at the yield limit, as well as the greatest stiffness equivalent to bending. All specimens with square and oblique connectors endured 2.5 million cycles in the minimum and maximum conditions of applied moment. The specimens with linear connector endured 2.5 million cycles with fractions of 40.14% of the bending moment at the yield limit, but failed with levels of 60.17% and 80.27%. Conclusions Systems with linear connectors showed greater mechanical resistance when compared to systems with square and oblique connectors. All systems supported cyclic loads that mimic in vivo demands. Level of evidence V; In vitro research.


Sign in / Sign up

Export Citation Format

Share Document