scholarly journals IWMPRAISE – An EU Horizon 2020 Project Providing Integrated Weed Management Solutions to European Farmers

2020 ◽  
Vol 31 (4) ◽  
pp. 152-159
Author(s):  
Per Kudsk ◽  
Mette Sønderskov ◽  
Ludovic Bonin ◽  
Jose L. Gonzalez-Andujar ◽  
Jens Erik Jensen ◽  
...  

IWMPRAISE is the first EU Framework Research project focusing solely on weed management. Thirty-eight partners in eight European countries are working together on developing integrated weed management strategies for agricultural and horticultural crops. Per Kudsk, the coordinator of IWMPRAISE, and the work package leaders present the project, the on-going studies and some of the early outputs. Weeds are ubiquitous and cause substantial yield losses across all arable and horticultural systems. Currently, the reliance on herbicides is very high in conventional farming systems and in many European countries herbicides are the single most used group of pesticides (https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=aei_fm_salpest09&lang=en). There are several reasons for the high herbicide use, such as lack of threshold-based spraying decisions and lack of any single sufficiently effective, readily applicable, cost-effective non-chemical method. Nonetheless, two factors are driving an immediate need to change weed control practices in conventional farming: the rapidly increasing problem of herbicide resistance, exacerbated by the fact that no new herbicide sites of action have been marketed since the early 1980s, and the expectation that many of the currently used herbicides will be withdrawn from the EU market as they do not meet the human and environmental toxicity criteria set out in EU Regulation 1109/2009. In addition to these two immediate concerns, it has also been shown that herbicides have partly been responsible for recent declines in farmland biodiversity and hence a negative impact on the associated ecosystem services. The over-reliance on chemical control of weeds has highlighted the need for Integrated Weed Management (IWM) strategies that combine non-chemical management options that reduce either weed density or competition with the crop.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 548 ◽  
Author(s):  
Panagiotis Kanatas ◽  
Ilias S. Travlos ◽  
Ioannis Gazoulis ◽  
Alexandros Tataridas ◽  
Anastasia Tsekoura ◽  
...  

Decision support systems (DSS) have the potential to support farmers to make the right decisions in weed management. DSSs can select the appropriate herbicides for a given field and suggest the minimum dose rates for an herbicide application that can result in optimum weed control. Given that the adoption of DSSs may lead to decreased herbicide inputs in crop production, their potential for creating eco-friendly and profitable weed management strategies is obvious and desirable for the re-designing of farming systems on a more sustainable basis. Nevertheless, it is difficult to stimulate farmers to use DSSs as it has been noticed that farmers have different expectations of decision-making tools depending on their farming styles and usual practices. The function of DSSs requires accurate assessments of weeds within a field as input data; however, capturing the data can be problematic. The development of future DSSs should target to enhance weed management tactics which are less reliant on herbicides. DSSs should also provide information regarding weed seedbank dynamics in the soil in order to suggest management options not only within a single period but also in a rotational view. More aspects ought to be taken into account and further research is needed in order to optimize the practical use of DSSs for supporting farmers regarding weed management issues in various crops and under various soil and climatic conditions.


Weed Science ◽  
2017 ◽  
Vol 65 (2) ◽  
pp. 295-304 ◽  
Author(s):  
Jordi Rey-Caballero ◽  
Aritz Royo-Esnal ◽  
Jordi Recasens ◽  
Ignacio González ◽  
Joel Torra

Corn poppy is the most widespread broadleaf weed infesting winter cereals in Europe. Biotypes that are resistant (R) to both 2,4-D and tribenuron-methyl have evolved in recent decades, thus complicating their chemical control. In this study, field experiments at two locations over three seasons were conducted to evaluate the effects of different weed management strategies on corn poppy resistant to 2,4-D and tribenuron-methyl, including crop rotations, delayed sowing and different herbicide programs. After 3 yr, all integrated weed management (IWM) strategies reduced the initial density of corn poppy, although the most successful strategies were those which either included a suitable crop rotation (sunflower or field peas), or had a variation in the herbicide application timing (early POST or combining PRE or early POST and POST). The efficacy of IWM strategies differed between both locations, possibly due to different population dynamics and the genetic basis of herbicide resistance. Integrated management of multiple herbicide–resistant corn poppy is necessary in order to reduce selection pressure by herbicides, mitigate the evolution of new R biotypes, and reduce the weed density in highly infested fields.


2016 ◽  
Vol 30 (2) ◽  
pp. 355-365 ◽  
Author(s):  
Thomas R. Butts ◽  
Jason K. Norsworthy ◽  
Greg R. Kruger ◽  
Lowell D. Sandell ◽  
Bryan G. Young ◽  
...  

Pigweeds are among the most abundant and troublesome weed species across Midwest and mid-South soybean production systems because of their prolific growth characteristics and ability to rapidly evolve resistance to several herbicide sites of action. This has renewed interest in diversifying weed management strategies by implementing integrated weed management (IWM) programs to efficiently manage weeds, increase soybean light interception, and increase grain yield. Field studies were conducted across 16 site-years to determine the effectiveness of soybean row width, seeding rate, and herbicide strategy as components of IWM in glufosinate-resistant soybean. Sites were grouped according to optimum adaptation zones for soybean maturity groups (MGs). Across all MG regions, pigweed density and height at the POST herbicide timing, and end-of-season pigweed density, height, and fecundity were reduced in IWM programs using a PRE followed by (fb) POST herbicide strategy. Furthermore, a PRE fb POST herbicide strategy treatment increased soybean cumulative intercepted photosynthetically active radiation (CIPAR) and subsequently, soybean grain yield across all MG regions. Soybean row width and seeding rate manipulation effects were highly variable. Narrow row width (≤ 38 cm) and a high seeding rate (470,000 seeds ha−1) reduced end-of-season height and fecundity variably across MG regions compared with wide row width (≥ 76 cm) and moderate to low (322,000 to 173,000 seeds ha−1) seeding rates. However, narrow row widths and high seeding rates did not reduce pigweed density at the POST herbicide application timing or at soybean harvest. Across all MG regions, soybean CIPAR increased as soybean row width decreased and seeding rate increased; however, row width and seeding rate had variable effects on soybean yield. Furthermore, soybean CIPAR was not associated with end-of-season pigweed growth and fecundity. A PRE fb POST herbicide strategy was a necessary component for an IWM program as it simultaneously managed pigweeds, increased soybean CIPAR, and increased grain yield.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1495
Author(s):  
Muhammad Javaid Akhter ◽  
Bo Melander ◽  
Solvejg Kopp Mathiassen ◽  
Rodrigo Labouriau ◽  
Svend Vendelbo Nielsen ◽  
...  

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages “BBCH 26–29”, V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages “BBCH 39–47” and “BBCH 81–90”. No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 717 ◽  
Author(s):  
Travlos ◽  
Montull ◽  
Kukorelli ◽  
Malidza ◽  
Dogan ◽  
...  

Sorghum halepense (L.) Pers is a common and noxious worldwide weed of increasing distribution in many European countries. In the present review, information on the biology, ecology, agricultural, economic and environmental impact of johnsongrass is given, and the current status of this weed in Europe is discussed. Furthermore, special attention is given to the important role of field trials using glyphosate to control weeds in arable and perennial crops in many European countries. Some of the factors which affect control efficacy and should be taken into account are also discussed. Finally, several non-chemical alternative methods (cultural, mechanical, thermal, biological, etc.) for johnsongrass management are also presented. The adoption of integrated weed management (IWM) techniques such as glyphosate use, crop rotation, and deep tillage is strongly recommended to control plant species that originate from both seed and rhizomes.


2019 ◽  
Vol 70 (2) ◽  
pp. 140 ◽  
Author(s):  
Gulshan Mahajan ◽  
Kerry McKenzie ◽  
Bhagirath S. Chauhan

Annual ryegrass (ARG) (Lolium rigidum Gaudin) is a problematic weed for chickpea (Cicer arietinum L.) production in Australia. Understanding the critical period of control of ARG in chickpea is important for developing effective integrated management strategies to prevent unacceptable yield loss. Experiments were conducted over 2 years at the research farm of the University of Queensland, Gatton, to evaluate the effect of chickpea row spacing (25 and 75cm) and cultivar (PBA Seamer and PBA HatTrick) and ARG infestation period (from 0, 3 and 6 weeks after planting (WAP), and weed-free) on ARG suppression and grain yield of chickpea. Year×treatment interactions were not significant for any parameter, and none of the treatment combinations showed any interaction for grain yield. Average grain yield was greater (20%) with 25-cm than 75-cm rows. On average, PBA Seamer had 9% higher yield than PBA HatTrick. Average grain yield was lowest in season-long weedy plots (562kg ha–1) and highest in weed-free plots (1849kg ha–1). Grain yield losses were lower when ARG emerged at 3 WAP (1679kg ha–1). Late-emerged ARG (3 and 6 WAP) had lower biomass (4.7–22.2g m–2) and number of spikes (5–24m–2) than ARG that emerged early; at 0 WAP, weed biomass was 282–337g m–2 and number of spikes 89–120m–2. Compared with wide row spacing, narrow row spacing suppressed ARG biomass by 16% and 52% and reduced number of spikes of ARG by 26% and 48% at 0 WAP and 3 WAP, respectively. PBA Seamer suppressed ARG growth more effectively than PBA HatTrick, but only in the season-long weedy plots. Our results imply that in ARG-infested fields, grain yield of chickpea can be increased by exploring narrow row spacing and weed-competitive cultivars. These cultural tools could be useful for developing integrated weed management tactics in chickpea in combination with pre-emergent herbicides.


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Wei Tang ◽  
Jie Chen ◽  
Jianping Zhang ◽  
Yongliang Lu

Triquetrous murdannia is an annual weed commonly found in rice fields in China. Laboratory and screenhouse experiments were carried out to determine the effect of light, temperature, osmotic and salt stress, seed burial depth, amount of rice residue, and depth of flooding on seed germination and seedling emergence of triquetrous murdannia and to evaluate the response of this weed to commonly available POST herbicides in China. Germination was greater than 93% under a wide day/night temperature range of 20/10 to 30/20 C in the light/dark regime. The time to onset of germination decreased as temperature increased. Germination was slightly stimulated when seeds were placed in light/dark conditions compared with seeds placed in the dark. The osmotic potential and NaCl concentration required for 50% inhibition of maximum germination were −0.5 MPa and 122 mM, respectively. The highest germination (68%) was observed from seeds sown on the soil surface, but decreased with increasing burial depth. Only 7% of seedlings emerged from a depth of 4 cm, and no seedlings emerged from seeds buried deeper than 6 cm. Seedling emergence decreased from 93 to 35% with increasing quantity of rice residue (1 to 6 103kg ha−1) applied on the soil surface. Seedling emergence was reduced by 40, 48, 64, and 70% at flooding depths of 1, 2, 4, and 6 cm, respectively, for the seeds sown on the soil surface. Fluroxypyr and MCPA herbicides provided 100% control of triquetrous murdannia at the 2- to 6-leaf stages; however, to achieve 100% control with bispyribac-sodium, MCPA+bentazone or MCPA+fluroxypyr, herbicides had to be applied by the 4-leaf stage. The results of this study could help in developing more sustainable and effective integrated weed management strategies for the control of triquetrous murdannia in rice fields in China.


Sign in / Sign up

Export Citation Format

Share Document