scholarly journals Management Options for Multiple Herbicide–Resistant Corn Poppy (Papaver rhoeas) in Spain

Weed Science ◽  
2017 ◽  
Vol 65 (2) ◽  
pp. 295-304 ◽  
Author(s):  
Jordi Rey-Caballero ◽  
Aritz Royo-Esnal ◽  
Jordi Recasens ◽  
Ignacio González ◽  
Joel Torra

Corn poppy is the most widespread broadleaf weed infesting winter cereals in Europe. Biotypes that are resistant (R) to both 2,4-D and tribenuron-methyl have evolved in recent decades, thus complicating their chemical control. In this study, field experiments at two locations over three seasons were conducted to evaluate the effects of different weed management strategies on corn poppy resistant to 2,4-D and tribenuron-methyl, including crop rotations, delayed sowing and different herbicide programs. After 3 yr, all integrated weed management (IWM) strategies reduced the initial density of corn poppy, although the most successful strategies were those which either included a suitable crop rotation (sunflower or field peas), or had a variation in the herbicide application timing (early POST or combining PRE or early POST and POST). The efficacy of IWM strategies differed between both locations, possibly due to different population dynamics and the genetic basis of herbicide resistance. Integrated management of multiple herbicide–resistant corn poppy is necessary in order to reduce selection pressure by herbicides, mitigate the evolution of new R biotypes, and reduce the weed density in highly infested fields.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1495
Author(s):  
Muhammad Javaid Akhter ◽  
Bo Melander ◽  
Solvejg Kopp Mathiassen ◽  
Rodrigo Labouriau ◽  
Svend Vendelbo Nielsen ◽  
...  

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages “BBCH 26–29”, V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages “BBCH 39–47” and “BBCH 81–90”. No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.


2019 ◽  
Vol 70 (2) ◽  
pp. 140 ◽  
Author(s):  
Gulshan Mahajan ◽  
Kerry McKenzie ◽  
Bhagirath S. Chauhan

Annual ryegrass (ARG) (Lolium rigidum Gaudin) is a problematic weed for chickpea (Cicer arietinum L.) production in Australia. Understanding the critical period of control of ARG in chickpea is important for developing effective integrated management strategies to prevent unacceptable yield loss. Experiments were conducted over 2 years at the research farm of the University of Queensland, Gatton, to evaluate the effect of chickpea row spacing (25 and 75cm) and cultivar (PBA Seamer and PBA HatTrick) and ARG infestation period (from 0, 3 and 6 weeks after planting (WAP), and weed-free) on ARG suppression and grain yield of chickpea. Year×treatment interactions were not significant for any parameter, and none of the treatment combinations showed any interaction for grain yield. Average grain yield was greater (20%) with 25-cm than 75-cm rows. On average, PBA Seamer had 9% higher yield than PBA HatTrick. Average grain yield was lowest in season-long weedy plots (562kg ha–1) and highest in weed-free plots (1849kg ha–1). Grain yield losses were lower when ARG emerged at 3 WAP (1679kg ha–1). Late-emerged ARG (3 and 6 WAP) had lower biomass (4.7–22.2g m–2) and number of spikes (5–24m–2) than ARG that emerged early; at 0 WAP, weed biomass was 282–337g m–2 and number of spikes 89–120m–2. Compared with wide row spacing, narrow row spacing suppressed ARG biomass by 16% and 52% and reduced number of spikes of ARG by 26% and 48% at 0 WAP and 3 WAP, respectively. PBA Seamer suppressed ARG growth more effectively than PBA HatTrick, but only in the season-long weedy plots. Our results imply that in ARG-infested fields, grain yield of chickpea can be increased by exploring narrow row spacing and weed-competitive cultivars. These cultural tools could be useful for developing integrated weed management tactics in chickpea in combination with pre-emergent herbicides.


2018 ◽  
Vol 32 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Taïga B. Cholette ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Peter H. Sikkema

AbstractGlyphosate-resistant (GR) and multiple herbicide–resistant (groups 2 and 9) Canada fleabane have been confirmed in 30 and 23 counties in Ontario, respectively. The widespread incidence of herbicide-resistant Canada fleabane highlights the importance of developing integrated weed management strategies. One strategy is to suppress Canada fleabane using cover crops. Seventeen different cover crop monocultures or polycultures were seeded after winter wheat harvest in late summer to determine GR Canada fleabane suppression in corn grown the following growing season. All cover crop treatments seeded after wheat harvest suppressed GR Canada fleabane in corn the following year. At 4 wk after cover crop emergence (WAE), estimated cover crop ground cover ranged from 31% to 68%, a density of 124 to 638 plants m–2, and a range of biomass from 29 to 109 g m–2, depending on cover crop species. All of the cover crop treatments suppressed GR Canada fleabane in corn grown the following growing season from May to September compared to the no cover crop control. Among treatments evaluated, annual ryegrass (ARG), crimson clover (CC)/ARG, oilseed radish (OSR)/CC/ARG, and OSR/CC/cereal rye (CR) were the best treatments for the suppression of GR Canada fleabane in corn. ARG alone or in combination with CC provided the most consistent GR Canada fleabane suppression, density reduction, and biomass reduction in corn. Grain corn yields were not affected by the use of the cover crops evaluated for Canada fleabane suppression.


2012 ◽  
Vol 5 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Angelica M. Herrera-Reddy ◽  
Raymond I. Carruthers ◽  
Nicholas J. Mills

AbstractIntegrated weed management strategies (IWM) are being advocated and employed to control invasive plants species. In this study, we compared three management strategies (biological control alone [BC], BC with fire [BC + F], and BC with mowing [BC + M]) to determine if physical controls reduce seed production by Scotch broom and interfere with the action of the biological control agent—the Scotch broom seed weevil. We measured seed production and seed predation by the weevil at both pod and plant scale, and seed bank density over two field seasons. We found no difference in the number of seeds per pod among management strategies. However, combining management strategies (BC + M and BC + F) resulted in significant reductions in pods per plant, mature seeds per plant, and seed bank density relative to biological control alone. We did not find differences among management strategies in number of weevils per pod or proportion of seeds predated by the weevil at either pod or whole-plant scale. However, combining management strategies (BC + M and BC + F) resulted in a significant reduction in healthy mature seeds per plant relative to biological control alone. Although both integrated strategies outperformed biological control alone in reducing seed production and the seed bank, with no statistical difference between them, we propose that short-rotation prescribed fire could prove to be a more effective strategy for long-term management of Scotch broom due to its potential for slightly greater depletion of the seed bank.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 764-772 ◽  
Author(s):  
Joel Torra ◽  
Aritz Royo-Esnal ◽  
Jordi Rey-Caballero ◽  
Jordi Recasens ◽  
Marisa Salas

AbstractCorn poppy (Papaver rhoeasL.) is the most widespread broadleaf weed species infesting winter cereals in Europe. Biotypes that are resistant to both 2,4-D and tribenuron-methyl, an acetolactate synthase (ALS) inhibitor, have evolved in recent decades, thus narrowing the options for effective chemical control. Though the effectiveness of several integrated weed management (IWM) strategies have been confirmed, none of these strategies have been tested to manage multiple herbicide–resistantP. rhoeasunder no-till planting. With the expansion of no-till systems, it is important to prove the effectiveness of such strategies. In this study, a field experiment over three consecutive seasons was conducted to evaluate and compare the effects of different weed management strategies, under either direct drilling (i.e., no-till) or intensive tillage, on a multiple herbicide–resistantP. rhoeaspopulation. Moreover, evaluations were carried out as to whether the proportions of ALS inhibitor–resistant individuals were affected by the tillage systems for each IWM strategy at the end of the 3-yr period. The IWM strategies tested in this research included crop rotation, delayed sowing, and different herbicide programs such as PRE plus POST or POST. All IWM strategies greatly reduced the initial density ofP. rhoeaseach season (≥ 95%) under either direct drilling or intensive tillage. After 3 yr, the IWM strategies were very effective in both tillage systems, though the effects were stronger under direct drilling (~95%) compared with intensive tillage (~86%). At the end of the study, the proportion of ALS inhibitor–resistant plants was not different between the IWM strategies in both tillage systems (94% on average). Therefore, crop rotation (with sunflower [Helianthus annuusL.]), delayed sowing, or a variation in the herbicide application timing are effective under direct drilling to manage herbicide-resistantP. rhoeas. Adoption of IWM strategies is necessary to mitigate the evolution of resistance in both conventional and no-till systems.


2020 ◽  
Vol 31 (4) ◽  
pp. 152-159
Author(s):  
Per Kudsk ◽  
Mette Sønderskov ◽  
Ludovic Bonin ◽  
Jose L. Gonzalez-Andujar ◽  
Jens Erik Jensen ◽  
...  

IWMPRAISE is the first EU Framework Research project focusing solely on weed management. Thirty-eight partners in eight European countries are working together on developing integrated weed management strategies for agricultural and horticultural crops. Per Kudsk, the coordinator of IWMPRAISE, and the work package leaders present the project, the on-going studies and some of the early outputs. Weeds are ubiquitous and cause substantial yield losses across all arable and horticultural systems. Currently, the reliance on herbicides is very high in conventional farming systems and in many European countries herbicides are the single most used group of pesticides (https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=aei_fm_salpest09&lang=en). There are several reasons for the high herbicide use, such as lack of threshold-based spraying decisions and lack of any single sufficiently effective, readily applicable, cost-effective non-chemical method. Nonetheless, two factors are driving an immediate need to change weed control practices in conventional farming: the rapidly increasing problem of herbicide resistance, exacerbated by the fact that no new herbicide sites of action have been marketed since the early 1980s, and the expectation that many of the currently used herbicides will be withdrawn from the EU market as they do not meet the human and environmental toxicity criteria set out in EU Regulation 1109/2009. In addition to these two immediate concerns, it has also been shown that herbicides have partly been responsible for recent declines in farmland biodiversity and hence a negative impact on the associated ecosystem services. The over-reliance on chemical control of weeds has highlighted the need for Integrated Weed Management (IWM) strategies that combine non-chemical management options that reduce either weed density or competition with the crop.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Bharat M. Upadhyay ◽  
Elwin G. Smith ◽  
G. W. Clayton ◽  
K. N. Harker ◽  
R. E. Blackshaw

Integrated weed management (IWM) decision strategies in herbicide-resistant canola-production systems were assessed for net returns and relative risk. Data from two field experiments conducted during 1998 to 2000 at two locations in Alberta, Canada, were evaluated. A herbicide-based experiment included combinations of herbicide system (glufosinate-, glyphosate-, and imazethapyr-resistant canola varieties), herbicide rate (50 and 100% of recommended dose), and time of weed removal (two-, four-, and six-leaf stages of canola). A seed-based experiment included canola variety (hybrid and open-pollinated), seeding rate (100, 150, and 200 seeds m−2), and time of weed removal (two-, four-, and six-leaf stages of canola). For the herbicide-based experiment, strategies with glyphosate were profitable at Lacombe, but both imazethapyr and glyphosate strategies were profitable at Lethbridge. Weed control at the four-leaf stage was at least as profitable as the two-leaf stage at both sites. For the seed-based experiment, the hybrid was more profitable than the open-pollinated cultivar, seed rates of 100 and 150 seeds m−2were more profitable than 200 seeds m−2, and weed control at the two- and four-leaf stages was more profitable than at the six-leaf stage. When risk of returns and statistical significance was considered, several strategies were included in the risk-efficient set for risk-averse and risk-neutral attitudes at each location. However, the glyphosate-resistant cultivar, the 50% herbicide rate, and weed control at four-leaf stage were more frequent in the risk-efficient IWM strategy set. The open-pollinated cultivar, 200 seeds m−2rate, and weed control at the six-leaf stage were less frequent in the set. The risk-efficient sets of IWM strategies were consistent across a range of canola prices.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1557
Author(s):  
Robert Martin ◽  
Bunna Som ◽  
Joel Janiya ◽  
Ratha Rien ◽  
Sophea Yous ◽  
...  

The objective of this work was to determine the value of improved establishment methods and herbicide applications as alternatives to high seeding rates to improve weed suppression in rice. Field experiments were carried out in 2010 and 2011 to determine optimal seeding rates and seeding methods with and without weed competition in wet-seeded rice. Under wet seeding conditions, drum seeding at 80 kg ha−1 was the most profitable treatment for both weed-free and unweeded rice. Although pre-emergence herbicides are beginning to be adopted in wet-seeded rice, they are seldom used in dry direct-seeded rice in Cambodia. Experiments were carried out in 2018 and 2019 to test crop tolerance and the efficacy of butachlor, oxadiazon, pendimethalin and pretilachlor applied post-sowing and pre-emergence to dry direct-seeded rice. Oxadiazon and butachlor, with the option for a post-emergence herbicide, provided effective weed control and a high grain yield in dry direct-seeded rice. Pretilachlor did not effectively control weeds under dry seeding conditions. Although pendimethalin exhibited good weed control, crop damage was a risk in poorly prepared seedbeds which typify Cambodian rice systems. With an effective integrated weed management strategy, it might be possible to safely reduce seeding rates below 80 kg ha−1 using drum or drill seeding machines.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Zahra Bitarafan ◽  
Christian Andreasen

AbstractBlackgrass (Alopecurus myosuroides Huds.) and silky windgrass [Apera spica-venti (L.) P. Beauv.] are becoming a significant problem in Europe. Due to the development of herbicide-resistant biotypes and unwanted side effects of herbicides, there is a need for new integrated weed management strategies to control weeds. Therefore, reducing weed infestations by targeting seed production during crop harvest should be considered. In 2017 and 2018, we estimated the fraction of the total seed production of A. myosuroides and A. spica-venti in a field that potentially could be collected by a grain harvester during winter wheat (Triticum aestivum L.) harvest. Twenty plants of each species were surrounded by a porous net before flowering to trap shed seeds during reproductive development. Seeds were collected and counted weekly up until and immediately before wheat harvest, and the ratio of harvestable seeds to shed seeds during the growing season was determined. Alopecurus myosuroides produced on average 953 seeds plant−1 in 2017 and 3,337 seeds plant−1 in 2018. In 2017 and 2018, 29% and 37% of the total A. myosuroides seeds produced, respectively, were retained on plants at maturity. Apera spica-venti produced on average 1,192 seeds plant−1 in 2017 and 5,678 seeds plant−1 in 2018, and retained 53% and 16% of the seeds at harvest, respectively. If a grain harvester potentially collected approximately 30% of the total seed production of the two grass weeds and removed or killed them, it would reduce seed input to the soil seedbank. However, such methods cannot stand alone to reduce weed pressure.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 696-701 ◽  
Author(s):  
Caio A. C. G. Brunharo ◽  
Bradley D. Hanson

AbstractItalian ryegrass [Lolium perenne L. spp. multiflorum (Lam.) Husnot] is a troublesome weedy species in many regions of California. Its control has been chiefly dependent on herbicides due to their effectiveness and practicality and, as result, herbicide-resistant populations have been selected. Poor control of a population of L. multiflorum with paraquat was recently reported in a prune orchard in Hamilton City, CA. A series of experiments were carried out to characterize the response of this population to several POST herbicides, study the mechanisms of resistance, and investigate alternative chemical management options in tree crops. A known susceptible (S) and the suspected resistant population (PRHC) were subjected to greenhouse dose–response experiments with clethodim, fluazifop-P-butyl, glufosinate, glyphosate, paraquat, pyroxsulam, rimsulfuron, and sethoxydim. A 310-bp fragment of the EPSPS gene containing position 106 was sequenced from PRHC and S. Field experiments were carried out in a prune orchard with PRE herbicides commonly used by perennial crop growers in California. Greenhouse dose–response experiments confirmed that PRHC is resistant to paraquat, as well as multiply resistant to clethodim and glyphosate. The EPSPS gene of PRHC is heterozygous for glyphosate resistance at position 106, where one allele exhibited proline substituted by serine and the other by alanine. Field experiments with PRE herbicides indicated that tank mixes containing indaziflam and flumioxazin can provide adequate L. multiflorum control up to 150 d after treatment. Poor weed management practices, such as overreliance on a single site of action, have frequently been associated with the selection of herbicide-resistant L. multiflorum populations around the world, and adequate herbicide-resistance management programs are necessary for growers to maintain economic sustainability even after evolution of herbicide-resistant weeds in their fields.


Sign in / Sign up

Export Citation Format

Share Document