scholarly journals Too much of a good thing: Overproduction of virulence factors impairs cryptococcal pathogenicity

2021 ◽  
Vol 8 (6) ◽  
pp. 108-110
Author(s):  
Julia C. V. Reuwsaat ◽  
Tamara L. Doering ◽  
Livia Kmetzsch

The regulation of virulence factor production and deployment is crucial for the establishment of microbial infection and subsequent pathogenesis. If these processes are not properly coordinated, the infecting pathogen is less likely to both survive the immune response and cause damage to the host. One key virulence factor of the opportunistic fungal pathogen Cryptococcus neoformans, which kills almost 200,000 people each year worldwide, is a polysaccharide capsule that surrounds the cell wall; this structure helps the fungal cells resist engulfment and elimination by host phagocytes. Another important virulence trait is the development of a giant (Titan) cell morphotype that increases fungal resistance to phagocytosis, oxidative stress, and antifungal treatment. We recently identified the transcription factor Pdr802 as essential for C. neoformans adaptation to and survival under host conditions both in vitro and in vivo (Reuwsaat et al., mBio, doi: 10.1128/mBio.03457-20). Cryptococci lacking Pdr802 display enlarged capsules and enhanced Titan cell production, along with dramatically reduced virulence in a mouse model of infection. These results demonstrate that more is not necessarily better when it comes to virulence factors. Instead, precise regulation of these traits, to avoid both under- and overexpression, is critical for the success of this pathogen as it faces the challenges imposed by the host environment.

Biofouling ◽  
2016 ◽  
Vol 32 (10) ◽  
pp. 1171-1183 ◽  
Author(s):  
Kannan Rama Devi ◽  
Ramanathan Srinivasan ◽  
Arunachalam Kannappan ◽  
Sivasubramanian Santhakumari ◽  
Murugan Bhuvaneswari ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Gurusamy Abirami ◽  
Rajaiah Alexpandi ◽  
Ravindran Durgadevi ◽  
Arunachalam Kannappan ◽  
Arumugam Veera Ravi

2015 ◽  
Vol 83 (4) ◽  
pp. 1296-1304 ◽  
Author(s):  
Robert J. Evans ◽  
Zhongming Li ◽  
William S. Hughes ◽  
Julianne T. Djordjevic ◽  
Kirsten Nielsen ◽  
...  

Cryptococcus neoformansis an opportunistic fungal pathogen and a leading cause of fungal-infection-related fatalities, especially in immunocompromised hosts. Several virulence factors are known to play a major role in the pathogenesis of cryptococcal infections, including the enzyme phospholipase B1 (Plb1). Compared to other well-studiedCryptococcus neoformansvirulence factors such as the polysaccharide capsule and melanin production, very little is known about the contribution of Plb1 to cryptococcal virulence. Phospholipase B1 is a phospholipid-modifying enzyme that has been implicated in multiple stages of cryptococcal pathogenesis, including initiation and persistence of pulmonary infection and dissemination to the central nervous system, but the underlying reason for these phenotypes remains unknown. Here we demonstrate that a Δplb1knockout strain ofC. neoformanshas a profound defect in intracellular growth within host macrophages. This defect is due to a combination of a 50% decrease in proliferation and a 2-fold increase in cryptococcal killing within the phagosome. In addition, we show for the first time that the Δplb1strain undergoes a morphological change duringin vitroandin vivointracellular infection, resulting in a subpopulation of very large titan cells, which may arise as a result of the attenuated mutant's inability to cope within the macrophage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Norhan H. Mahdally ◽  
Riham F. George ◽  
Mona T. Kashef ◽  
Medhat Al-Ghobashy ◽  
Fathia E. Murad ◽  
...  

The emergence of microbial resistance to the available antibiotics is a major public health concern, especially with the limited rate of developing new antibiotics. The utilization of anti-virulence agents is a non-conventional approach that can be used to combat microbial infection. In Staphylococcus aureus, many virulence factors are regulated by the Agr-mediated quorum sensing (QS). We developed a chemical compound that acts a potential Agr-inhibitor without reducing bacterial viability. The compound was designated staquorsin for Staphylococcus aureus QS inhibitor. In silico analyses confirmed the binding of staquorsin to the AgrA active site with an absolute binding score comparable to savirin, a previously described AgrA inhibitor. However, staquorsin turned out to be superior over savarin in not affecting the S. aureus viability in concentrations up to 600 μM. On the other hand, savirin inhibited S. aureus growth in concentrations as low as 25 μM. Moreover, staquorsin proved to be a potent inhibitor of the Agr system by inhibiting hemolysins, lipase production, and affecting biofilms formation and detachment. On the molecular level it significantly inhibited the effector transcript RNA III. In vivo testing, using the murine skin abscess model, confirmed the ability of staquorsin to modulate S. aureus virulence by effectively controlling the infection. Twenty passages of S. aureus in the presence of 40 μM staquorsin have not resulted in loss of activity as evidenced by maintaining its ability to reduce hemolysin production and RNA III transcript levels. In conclusion, we hereby describe a novel anti-virulence compound inhibiting the S. aureus Agr-system and its associated virulence factors. It is active both in vitro and in vivo, and its frequent use does not lead to the development of resistance. These findings model staquorsin as a promising drug candidate to join the fierce battle against the formidable pathogen S. aureus.


2018 ◽  
Author(s):  
Masaya Yamaguchi ◽  
Kana Goto ◽  
Yujiro Hirose ◽  
Yuka Yamaguchi ◽  
Tomoko Sumitomo ◽  
...  

AbstractEvolutionarily conserved virulence factors can be candidate therapeutic targets or vaccine antigens. Here, we investigated the evolutionary selective pressures on 16 pneumococcal choline-binding cell-surface proteins sinceStreptococcus pneumoniaeis one of the pathogen posing the greatest threats to human health. Phylogenetic and molecular analyses revealed thatcbpJhad the highest codon rates to total numbers of codons under significant negative selection among those examined. Ourin vitroandin vivoassays indicated that CbpJ functions as a virulence factor in pneumococcal pneumonia by contributing to evasion of neutrophil killing. Deficiency ofcbpLunder relaxed selective pressure also caused a similar tendency but showed no significant difference in mouse intranasal infection. Thus, molecular evolutionary analysis is a powerful tool that reveals the importance of virulence factors in real-world infection and transmission, since calculations are performed based on bacterial genome diversity following transmission of infection in an uncontrolled population.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 631
Author(s):  
Mengfan Peng ◽  
Wentao Tong ◽  
Zhen Zhao ◽  
Ling Xiao ◽  
Zhaoyue Wang ◽  
...  

In this experiment, the quorum quenching gene ytnP of Bacillus licheniformis T-1 was cloned and expressed, and the effect against infection of Aeromonas hydrophila ATCC 7966 was evaluated in vitro and vivo. The BLAST results revealed a 99% sequence identity between the ytnP gene of T-1 and its homolog in B.subtilis sub sp. BSP1, and the dendroGram showed that the similarity in the YtnP protein in T-1 was 100% in comparison with B.subtilis 3610, which was categorized as the Aidc cluster of the MBL family. The AHL lactonase activity of the purified YtnP was detected as 1.097 ± 0.7 U/mL with C6-HSL as the substrate. Otherwise, purified YtnP protein could significantly inhibit the biofilm formation of A.hydrophila ATCC 7966 with an inhibition rate of 68%. The MIC of thiamphenicol and doxycycline hydrochloride against A. hydrophila reduced from 4 μg/mL and 0.5 μg/mL to 1 μg/mL and 0.125 μg/mL, respectively, in the presence of YtnP. In addition, YtnP significantly inhibited the expression of five virulence factors hem, ahyB, ast, ep, aerA of A. hydrophila ATCC 7966 as well (p < 0.05). The results of inhibition on virulence showed a time-dependence tendency, while the strongest anti-virulence effects were within 4–24 h. In vivo, when the YtnP protein was co-injected intraperitoneally with A. hydrophila ATCC 7966, it attenuated the pathogenicity of A. hydrophila and the accumulated mortality was 27 ± 4.14% at 96 h, which was significantly lower than the average mortality of 78 ± 2.57% of the Carassius auratus injected with 108 CFU/mL of A. hydrophila ATCC 7966 only (p < 0.001). In conclusion, the AHL lactonase in B. licheniformis T-1 was proven to be YtnP protein and could be developed into an agent against infection of A. hydrophila in aquaculture.


2012 ◽  
Vol 57 (1) ◽  
pp. 445-451 ◽  
Author(s):  
Ilka Tiemy Kato ◽  
Renato Araujo Prates ◽  
Caetano Padial Sabino ◽  
Beth Burgwyn Fuchs ◽  
George P. Tegos ◽  
...  

ABSTRACTThe objective of this study was to evaluate whetherCandida albicansexhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells.C. albicanswas exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ 660 nm, 75 mW/cm2, 9 to 27 J/cm2).In vitro, we evaluated APDI effects onC. albicansgrowth, germ tube formation, sensitivity to oxidative and osmotic stress, cell wall integrity, and fluconazole susceptibility.In vivo, we evaluatedC. albicanspathogenicity with a mouse model of systemic infection. Animal survival was evaluated daily. Sublethal MB-mediated APDI reduced the growth rate and the ability ofC. albicansto form germ tubes compared to untreated cells (P< 0.05). Survival of mice systemically infected withC. albicanspretreated with APDI was significantly increased compared to mice infected with untreated yeast (P< 0.05). APDI increasedC. albicanssensitivity to sodium dodecyl sulfate, caffeine, and hydrogen peroxide. The MIC for fluconazole forC. albicanswas also reduced following sublethal MB-mediated APDI. However, none of those pathogenic parameters was altered in daughter cells ofC. albicanssubmitted to APDI. These data suggest that APDI may inhibit virulence factors and reducein vivopathogenicity ofC. albicans. The absence of alterations in daughter cells indicates that APDI effects are transitory. The MIC reduction for fluconazole following APDI suggests that this antifungal could be combined with APDI to treatC. albicansinfections.


2021 ◽  
Author(s):  
Fabien Thery ◽  
Lia Martina ◽  
Caroline Asselman ◽  
Heidi Repo ◽  
Yifeng Zhang ◽  
...  

ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we used a viral-like particle trapping technology to identify ISG15-binding proteins and discovered Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly-characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We found that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We showed that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1 (HSV-1), human respiratory syncytial virus (RSV) and coxsackievirus B3 (CVB3), and we observed a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide novel molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.


2007 ◽  
Vol 81 (17) ◽  
pp. 9490-9501 ◽  
Author(s):  
Christine D. Krempl ◽  
Anna Wnekowicz ◽  
Elaine W. Lamirande ◽  
Giw Nayebagha ◽  
Peter L. Collins ◽  
...  

ABSTRACT Pneumonia virus of mice (PVM) is a murine relative of human respiratory syncytial virus (HRSV). Here we developed a reverse genetics system for PVM based on a consensus sequence for virulent strain 15. Recombinant PVM and a version engineered to express green fluorescent protein replicated as efficiently as the biological parent in vitro but were 4- and 12.5-fold attenuated in vivo, respectively. The G proteins of HRSV and PVM have been suggested to contribute to viral pathogenesis, but this had not been possible to study in a defined manner in a fully permissive host. As a first step, we evaluated recombinant mutants bearing a deletion of the entire G gene (ΔG) or expressing a G protein lacking its cytoplasmic tail (Gt). Both G mutants replicated as efficiently in vitro as their recombinant parent, but both were nonpathogenic in mice at doses that would otherwise be lethal. We could not detect replication of the ΔG mutant in mice, indicating that its attenuation is based on a severe reduction in the virus load. In contrast, the Gt mutant appeared to replicate as efficiently in mice as its recombinant parent. Thus, the reduction in virulence associated with the Gt mutant could not be accounted for by a reduction in viral replication. These results identified the cytoplasmic tail of G as a virulence factor whose effect is not mediated solely by the viral load. In addition to its intrinsic interest, a recombinant virus that replicates with wild-type-like efficiency but does not cause disease defines optimal properties for vaccine development.


2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


Sign in / Sign up

Export Citation Format

Share Document