scholarly journals Effect of phosphorus and potassium on growth and yield characters of bitter gourd (Momordica charantia L.) ecotype ‘Mithipagal’

2015 ◽  
Vol 10 (2) ◽  
pp. 207-211
Author(s):  
JOHNSON NAOREM ◽  
R. SURESHKUMAR
2015 ◽  
Vol 24 (3) ◽  
pp. 173-177
Author(s):  
Ki-cheol Seong ◽  
기철 성 ◽  
Chun Hwan Kim ◽  
Seung Hwan Wei ◽  
Chan Gyu Lim ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 395-401
Author(s):  
Rajesh Kanwar ◽  
D. K. Mehta

A study was carried out to evaluate the effect of solid matrix priming of seeds on emergence (%), growth and fruit yield characters of bitter gourd (Momordica charantia L.) cultivar ‘Solan Hara’. The Experiment comprised of two vigour groups of seeds viz., ‘V1’ (High vigour seeds) and ‘V2’ (72 hours accelerated aged seeds/low vigour seeds) and five seed priming treatments viz., ‘P1’ (Solid matrix priming with Cocopeat), ‘P2’ (Solid matrix priming with Perlite), ‘P3’ (Solid matrix priming with Vermiculite), ‘P4’ (Seed soaking in water), ‘P5’ (Control -Without treatment).Investigation proved that low vigour seeds were inferior in respect of high vigour seeds in terms of seed physiological quality, emergence, growth and yield characteristics. Seed priming with Perlite for 72 hours proved its potential over other priming treatments, seed soaking and control (non-primed seeds) in both high vigour and low vigour seeds for agronomic attributes under study. High vigour seeds primed with Perlite ‘V1P2’ was found to be the best treatment for most of the traits understudy recording highest total field emergence (76.60%), fruit yield per plot (16.12 Kg) and per hectare (250.35 q). Similarly, Low vigour seeds primed with Perlite also recorded enhanced and improved total field emergence (73.83%) fruit yield per plot (9.28 Kg) and per hectare (143.26 q) compared to other low vigour treated and non treated seeds. From the present investigation it was inferred that that the extent of improvement w.r.t. attributes studied was more in low vigour seeds (V2) and seed priming with solid matrix carrier ‘Perlite’ can be used as a beneficial pre-sowing treatment to enhance the seedling emergence, growth and yield characteristics in bitter gourd.


2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Junjie Cui ◽  
Jiazhu Peng ◽  
Jiaowen Cheng ◽  
Kailin Hu

Abstract Background The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. Results Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines ‘47–2–1-1-3’ and ‘04–17,’ indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 ‘47–2–1-1-3’ × ‘04–17’ F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. Conclusions This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Aung Zaw Htwe ◽  
Seinn Moh Moh ◽  
Khin Myat Soe ◽  
Kyi Moe ◽  
Takeo Yamakawa

The use of biofertilizers is important for sustainable agriculture, and the use of nodule bacteria and endophytic actinomycetes is an attractive way to enhance plant growth and yield. This study tested the effects of a biofertilizer produced from Bradyrhizobium strains and Streptomyces griseoflavus on leguminous, cereal, and vegetable crops. Nitrogen fixation was measured using the acetylene reduction assay. Under N-limited or N-supplemented conditions, the biofertilizer significantly promoted the shoot and root growth of mung bean, cowpea, and soybean compared with the control. Therefore, the biofertilizer used in this study was effective in mung bean, cowpea, and soybean regardless of N application. In this study, significant increments in plant growth, nodulation, nitrogen fixation, nitrogen, phosphorus, and potassium (NPK) uptake, and seed yield were found in mung beans and soybeans. Therefore, Bradyrhizobium japonicum SAY3-7 plus Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus are effective bacteria that can be used together as biofertilizer for the production of economically important leguminous crops, especially soybean and mung bean. The biofertilizer produced from Bradyrhizobium and S. griseoflavus P4 will be useful for both soybean and mung bean production.


Sign in / Sign up

Export Citation Format

Share Document