scholarly journals POTENCIAL DE REÚSO DE EFLUENTES TRATADOS PARA IRRIGAÇÃO PERIURBANA NO MUNICÍPIO DE GUARABIRA/PB

Irriga ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 671-677
Author(s):  
LIBIANE MARINHO BERNARDINO ◽  
PATRÍCIA DA SILVA COSTA ◽  
VERA LÚCIA ANTUNES DE LIMA ◽  
RENER LUCIANO DE SOUZA FERRAZ

POTENCIAL DE REÚSO DE EFLUENTES TRATADOS PARA IRRIGAÇÃO PERIURBANA NO MUNICÍPIO DE GUARABIRA/PB     LIBIANE MARINHO BERNARDINO1; PATRÍCIA DA SILVA COSTA2; VERA LÚCIA ANTUNES DE LIMA3 E RENER LUCIANO DE SOUZA FERRAZ4.   1 Mestranda em Gestão e Regulação em Recursos Hídricos, Unidade Acadêmica de Tecnologia do Desenvolvimento, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected] 2 Doutoranda em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 3 Profa. Doutora em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 4 Prof. Doutor em Engenharia Agrícola, Unidade Acadêmica de Desenvolvimento Sustentável do Semiárido, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected]     1 RESUMO   A água é um recurso finito que se encontra escasso, o que justifica a busca por gestão e inovação de práticas que a preserve. O objetivo da pesquisa é avaliar o potencial de reúso dos efluentes tratados para irrigação periurbana. Foram levantados dados de uma Estação de Tratamento de Esgotos (ETE), localizada no município de Guarabira, PB, e operada pela Companhia de Água e Esgotos do Estado da Paraíba (CAGEPA), durante o período de janeiro a dezembro de 2019. Analisou-se os seguintes parâmetros físico-químicos e bacteriológicos: Potencial Hidrogeniônico (pH), Condutividade Elétrica (CE), Demanda Bioquímica de Oxigênio (DBO), Demanda Química de Oxigênio (DQO), Sólidos Totais (ST), Oxigênio Dissolvido (OD), Fósforo Total, e Coliformes Termotolerantes. Os dados foram submetidos à análise descritiva e expresso em valores mínimos, máximos e médios. Os indicadores foram satisfatórios para irrigação restrita, porém com a necessidade de tratamento complementar para determinados cultivos. O potencial de reúso   dos efluentes tratados na ETE pode beneficiar uma área de 118,7 ha considerando uma demanda de irrigação de 18.000 m³ ha-1 ano-1, o que demonstra ser um recurso sustentável e que precisa ser regulamentado no Brasil.   Palavras-chave: recursos hídricos, resíduos líquidos, tratamento de água, fertirrigação.     BERNARDINO, L. M.; COSTA, P. S.; LIMA, V. L. A.; FERRAZ, L. R. S. REUSE POTENTIAL OF TREATED EFFLUENTS FOR PERIURBAN IRRIGATION IN THE MUNICIPALITY OF GUARABIRA/PB     2 ABSTRACT   Water is at the center of sustainable development and a finite resource that is in short supply, which justifies the search for management and innovation of practices that preserve it. This research aims to evaluate the potential for reuse of treated effluent for periurban irrigation. Data were collected from a Sewage Treatment Plant (STP), located in the municipality of Guarabira, PB, and operated by the Water and Sewage Company of the State of Paraíba (CAGEPA), during the period from January to December 2019, with the analysis of the following physicochemical and bacteriological parameters: Hipogenic Potential (pH), Electrical Conductivity (CE), Biochemical Oxygen Demand (DBO), Chemical Oxygen Demand (DQO), Total Solids (ST), Dissolved Oxygen (OD), Total Phosphorus, and Thermotolerant Coliforms. The data were submitted to the descriptive analysis and expressed as minimum, maximum and average values. The indicators were satisfactory for restricted irrigation, but with the need for complementary treatment for certain crops. The potential for reuse of the effluents treated in the ETE can benefit an area of 118.7 ha considering an irrigation demand of 18,000 m³ ha-1 year-1, which demonstrates to be a sustainable resource that needs to be regulated in Brazil.   Keywords: Water resources, liquid waste, water treatment, fertigation.

Author(s):  
Vinay Khewale

A sewage water treatment plant is necessary to receive and treat waste water (Domestic, Commercial, and Industrial). Its objective is to be convert harmful waste water to safe water environmentally and treated effluent and treated sludge suitable for reuse and disposal such as farm fertilizer. The characteristics of waste water have been performed followed by design of sewage treatment plant. The present study includes design of sewage treatment plant and analysis of waste water – PH value, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Solids (TS), Hardness, Chloride, Acidity, Oil, Fats and grease etc. The sample collection of waste water has been done in many times in a day to obtain an average value of major parameter. Followed by values of this parameter, calculations are done for designing the units of sewage treatment plant and layout is prepared for the same


Author(s):  
Dhanraj M R ◽  
◽  
Ganesha A ◽  

The aim of this study is to evaluate the quality of sewage generated from 7000 KLD Sewage Treatment Plant (STP) located at Manipal Institute of Technology, Manipal Karnataka which is based on the Activated Sludge Technology. The study of sewage quality of this plant is essential as most of the treated effluent discharged into a stream during monsoon and remaining season used for a Gardening purpose. Water samples were collected from the outlet and analyzed for the major waste-water quality parameters, such as pH, Biochemical Oxygen Demand (BOD) and residual chlorine. The overall quality of sewage of 7000 KLD Sewage treatment plants will be evaluated by collecting samples. The results of these evaluations also determine whether the effluent discharged into the water body is under limits given by Karnataka state pollution control board (KSPCB) & BIS standards.


2021 ◽  
Vol 11 (2) ◽  
pp. 15-24
Author(s):  
Nur Diana Wakimin ◽  
Juferi Idris ◽  
Lydia Dundun Francis ◽  
Maureen Neging ◽  
Siti Rafiqah Muskil ◽  
...  

Pollutants from sewage wastewater are major concerns due to their environmental effects. Thus, an effective sewage wastewater treatment plant is important to ensure discharged effluent is well treated before it can be released to rivers or water streams. This study aims to evaluate the performance of the Activated Sludge Hi-Kleen Treatment Plant (ASHTP) located at H Block (ASHTP at H Block) and L Block (ASHTP at L Block) in UiTM Sarawak Branch, Samarahan Campus, Sarawak, Malaysia. The evaluation was based on physicochemical and removal efficiency namely pH, temperature, turbidity, chemical oxygen demand (COD), and total suspended solids (TSS) from raw influent and treated effluent. The findings indicated that the overall performance of both ASHTP at H Block and L Block were satisfactory where treated effluent meets the standard discharge limits of Environmental Quality (Sewage) Regulations 2009 (Standard B). For ASHTP at H Block, the removal efficiencies of turbidity, COD, and TSS were found to be 86.00, 13.76, and 88.02% respectively, in which the pH, temperature, turbidity, COD, and TSS of the treated effluent were 7.30, 28.10°C, 10.40 NTU, 14.10 mg/L and 8.90 mg/L respectively. Meanwhile, for ASHTP at L Block, the removal efficiencies of turbidity, COD, and TSS were found to be 43.20, 41.90, and 51.61% respectively, in which the pH, temperature, turbidity, COD, and TSS in the treated effluent were 7.30, 27.90°C, 21.10 NTU, 58.10 mg/L and 18.00 mg/L respectively. Proper maintenance of sewage treatment plant is important to ensure its effectiveness as well as to prolong its lifespan.


Author(s):  
Tamara Lang ◽  
Markus Himmelsbach ◽  
Franz Mlynek ◽  
Wolfgang Buchberger ◽  
Christian W. Klampfl

AbstractIn the present study, the uptake and metabolization of the sartan drug telmisartan by a series of plants was investigated. Thereby for seven potential metabolites, modifications on the telmisartan molecule such as hydroxylation and/or glycosylation could be tentatively identified. For two additional signals detected at accurate masses m/z 777.3107 and m/z 793.3096, no suggestions for molecular formulas could be made. Further investigations employing garden cress (Lepidium sativum) as a model plant were conducted. This was done in order to develop an analytical method allowing the detection of these substances also under environmentally relevant conditions. For this reason, the knowledge achieved from treatment of the plants with rather high concentrations of the parent drug (10 mg L−1) was compared with results obtained when using solutions containing telmisartan in the μg - ng L−1 range. Thereby the parent drug and up to three tentative drug-related metabolites could still be detected. Finally cress was cultivated in water taken from a local waste water treatment plant effluent containing 90 ng L−1 of telmisartan and harvested and the cress roots were extracted. In this extract, next to the parent drug one major metabolite, namely telmisartan-glucose could be identified.


2021 ◽  
Author(s):  
Yanyan Fang

Abstract Microplastics (MPs) have been found in all environment matrices and have become an issue of concern worldwide. In this study, Baiyangdian Lake in Northern China was investigated for the presence of MPs (0.45 µm–5 mm) in sediment and at different water depths. MPs were found at 1,000–20,000 pieces/m3 (average 9,595) in water and at 400–2,200 pieces/kg (average 1,023) in sediment. Since the implementation of pollution abatement measures, visible MPs have been nearly eliminated; the MPs found in this study were mainly in the micrometer range, with no more than 3–5 pieces greater than 1 mm per sample. The main forms of MPs were fibrous and fragmented, and the main components were polyamide, polyethylene, and polypropylene. MPs found in water near a garbage transfer station showed the following abundance of MPs: surface water < middle water < bottom water. The sediment contained a higher amount of MP fragments, indicating that the historical transfer and disposal of garbage was a main source of plastic deposition in this area. There was a high content of fibrous MPs in surface water, while the abundance of fragmented MPs increased with the depth of water. The main sources of MPs in the study area were residential activities, local plastic factories, and the treated effluent from a sewage treatment plant.


2019 ◽  
Vol 15 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Bikram Gautam ◽  
Anjita Rajbhanshi ◽  
Rameshwar Adhikari

Background: Water sources such as lakes, ponds, river etc. have been continuously contaminated by the   micro organisms and chemicals. The former can pose a significant threat to human health. This work aims at detecting the bacterial load before and after the sewage treatment and hence isolating pathogens from the sewage before primary treatment and secondary treated effluent. Methods: Grab sampling (50mL sewage before primary treatment and secondary treated effluent) was performed for 20 days in the Guheswori  sewage treatment plant. The reduction in microbial load was determined through heterotrophic plate count. Pathogens were screened from the effluent obtained from the secondary treatment plant. Results: Bacterial load reduction was found to be about 48.02% on average. The observed bacterial load reduction might have been caused by bacteriophage flocculation and sedimentation. Pathogens isolated from the treated effluent were Escherichia coli, Salmonella Typhi, Enterococcus faecalis, Staphylococcus aureus, Coagulase negative Staphylococcus (CONS), Citrobacter fruendii, Enterobacter aerogenes, Proteus mirabilis, P. vulgaris, Pseudomonas  aeruginosa. Conclusions: It has been found that the sewage treatment plant helps to reduce the bacterial load which is, however, not capable of effluent polishing where all pathogens are killed. 


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5368 ◽  
Author(s):  
Anna Cristina P. Lima ◽  
Magali C. Cammarota ◽  
Melissa L.E. Gutarra

A residue from the primary treatment of a Wastewater Treatment Plant (WWTP) was used to isolate filamentous fungi with lipase production potential. Two of the 27 isolated fungi presented high hydrolysis index and were selected for lipase production by solid-state fermentation (SSF). The fermentations were conducted at 30 °C for 48 h, with moist air circulation, using 20% (w/w) of the residue mixture with a basal medium (agroindustrial residue—babassu cake), obtaining a solid enzymatic preparation (SEP) with lipase activity of 19 U/g with the fungus identified as Aspergillus terreus. Scum, collected in an anaerobic reactor operating in a WWTP, was hydrolyzed with SEP and subjected to anaerobic biodegradability tests at 30 °C. Different dilutions of crude (Control) or hydrolyzed scum in raw sewage were evaluated. The dilution of 5% (v/v) of hydrolyzed scum in raw sewage proved the most adequate, as it resulted in higher methane yield compared to the raw sewage (196 and 133 mL CH4/g CODadded, respectively), without increasing the chemical oxygen demand (COD) of the treated sewage (138 and 134 mg/L). The enzymatic hydrolysis of the scum, followed by dilution in the influent sewage, is technically feasible and increases methane production in anaerobic reactors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


1973 ◽  
Vol 8 (1) ◽  
pp. 122-147
Author(s):  
J. D. O’Blenis ◽  
T.R. Warriner

Abstract The current widespread practice of disposal of water filtration plant wastes by direct discharge to receiving waters is coming under critical review by regulatory agencies. Among the alternatives for management of these wastes is the possibility of disposal to sanitary sewer systems. Since a recent nation-wide survey had established alum sludge as the most common waste generated by filtration plants, research was initiated to study the effects of water plant alum sludge on primary sewage treatment. A pilot primary sewage treatment plant was constructed and operated with a raw sewage feed of five litres per minute. A laboratory jar test program was conducted to supplement pilot plant operation. Sludges from two different water purification plants were tested along with alum and combinations of alum and water purification plant sludge for their effects on the removal of suspended solids, chemical oxygen demand (COD) and phosphates. The data showed jar testing to be a good indicator of pilot plant performance. Suspended solids, COD and phosphate removal efficiencies were improved by the addition of the sludges. The phosphate removal capacity of water treatment plant alum sludge was approximately the same as that reported for aluminum hydroxide, or about 1/7 to 1/9 of that determined for alum (as Aluminum). Recycling of the sludges improved phosphate removal performance.


2015 ◽  
Vol 737 ◽  
pp. 635-638
Author(s):  
Ke Zhao ◽  
Zheng Kong

The general existing low temperature problem in winter of north-city sewage treatment plant in the process of waste water treatment seriously affect the efficiency of the work. The research objective of this paper is to conduct investigate in the application of AICS method in Jilin Province, a sewage treatment plant engineering example has been employed to monitor the effluent of the indicators of sewage treatment under the low temperature condition during the winter the winter low temperature under the condition of sewage treatment plant effluent of the indicators; to understand the operation situation of sewage treatment plant, and to study the efficiency of hydrolysis - AICS processing waste-water. The result shows that: hydrolysis - AICS process works well in low temperature condition, the per TN removal rate is 76.79%, average removal rate of NH3 - N is 85.76%, average TP removal rate was 93.4%, the average COD removal rate was 90.6%. The effluent meet the national level A discharge standard requirements of "urban sewage treatment plant pollutant discharge standard". And through the retrenchment of the second pond and other ancillary equipment, Hydrolysis-AICS process could efficiently reduce the costs. Besides, the advantages of Hydrolysis-AICS process also include occupying small area, and operating easily and simply. Therefore Hydrolysis-AICS process is very helpful to achieve the sewage discharging standard in the northern towns.


Sign in / Sign up

Export Citation Format

Share Document