Rare earth recovery from uranium plant raffinate and operation of a rare earth separation pilot plant

CIM Journal ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
B. Zhao ◽  
Y. Tang ◽  
J. Zhang
Keyword(s):  
1991 ◽  
Vol 249 ◽  
Author(s):  
U. Balachandran ◽  
S. E. Donris ◽  
M. T. Lanagan ◽  
R. B. Poeppel ◽  
J. M. Tourre ◽  
...  

ABSTRACTA wide variety of compounds, e.g., superconductors, chromites, and manganites, can be synthesized by spray drying a mixture of salts or a combination of salts and sols in a flash dryer. The process ensures good control of stoichiometry, morphology, particle size, and surface area. Appropriate particle-growth and synthesis heat treatments of these fine powders have been conducted, and the resultant powders have been evaluated for possible applications in fuel cells and superconductors. The process has been scaled up to a pilot-plant capacity of ≈40 kg per day.


EKSPLORIUM ◽  
2018 ◽  
Vol 39 (1) ◽  
pp. 39
Author(s):  
Dany Poltak Marisi ◽  
Suprihatin Suprihatin ◽  
Andes Ismayana

Pemisahan unsur radioaktif dan logam tanah jarang yang dilakukan di PLUTHO menghasilkan limbah yang masih mengandung torium dan uranium. Limbah yang dihasilkan memerlukan pengolahan lanjutan agar ramah lingkungan. Tujuan penelitian adalah menurunkan kadar torium dan radioaktivitas dalam limbah cair proses pengolahan monasit pilot plant PLUTHO menggunakan koagulan fero sulfat. Pilot Plant PLUTHO merupakan suatu fasilitas yang didirikan untuk untuk memisahkan uranium, torium, dan logam tanah jarang (LTJ) dari mineral monasit dan mineral lainnya dalam skala pilot. Perlakuan variasi yang dilakukan pada penelitian adalah dosis koagulan dan pH. Pengukuran kadar torium dilakukan dengan metode Spektrofotometer UV-Vis, sedangkan pengukuran radioaktivitas dilakukan dengan alat ukur radiasi Ludlum Model 1000 Scaler. Hasil penelitian menunjukkan kondisi optimum koagulasi pada pH 8,0 dengan dosis koagulan FeSO4 225 mg/L yang dapat menurunkan kadar torium sebesar 45,20 % dan menurunkan radioaktivitas sebesar 100 % dari kadar torium dan radioaktivitas awal yaitu 0,73 mg/L dan 1,35 Bq/g. The separation of radioactive and rare earth mineral carried out in PLUTHO produces waste that still contains thorium and uranium. The resulting waste requires further processing to be environmentally friendly. The purpose of study is to reduce thorium content and radioactivity in liquid waste of PLUTHO monazite treatment process using ferro sulphate coagulant. PLUTHO Pilot Plant is one of facility that built to dissociate uranium, thorium and light rare earth from mineral of monazite. Variations of treatments applied in the research are coagulant dosage and pH. Thorium content is measured by Spectrophotometer UV-Vis method, whereas radioactivity is measured by radiation counting meter Ludlum Model 1000 Scaler. The result shows that the optimum condition of coagulation is in pH 8,0 with concentration of ferro sulphate 225 mg/L which may reduce thorium content up to 45,20 % and reduce radioactivity to 100 % out of its initial thorium content and radioactivity as much as 0,73 mg/L and 1,35 Bq/g, respectively.


2019 ◽  
Vol 276 ◽  
pp. 02005
Author(s):  
Nunik Madyaningarum ◽  
Mohammed Ali Berawi ◽  
Gunawan ◽  
I Gede Sukadana

Monitoring and supervision of factors that predominantly affect the successful implementation of quality management systems on the project will improve the quality of construction that provides a safety factor in the construction of a pilot plant nuclear fuel processing, to determine those factors is the aim of this research. The separation of Uranium, Thorium, and Rare Earth Metals Pilot Plant was used as a case of the research. Adopted descriptive research design were the primary data collected using questionnaires. Data collected analysed thought multiple linear regressions that only done on factors that have correlation strong – very strong. International Standard Organisation series 9001:2015 and International Atomic Energy Agency safety standards series No. GS-R3 were used as independent variables (X), contamination level was used as dependent variable (Y) that reflected project quality. The result is there are three factors that statistically significant influencing project quality: leadership and commitment, project planning, and safety culture. Those factors influencing the achievement of construction quality of the pilot plant uranium, thorium and rare earth element i.e. 92.3%, while the remaining 7.7% (100-92.3%) is determined by other variables.


EKSPLORIUM ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 73 ◽  
Author(s):  
Herry Poernomo ◽  
Dwi Biyantoro ◽  
Maria Veronica Purwani

ABSTRAKKeberadaan zirkon (ZrSiO4) di alam kebanyakan berasosiasi dengan beberapa senyawa oksida berharga (SOB) seperti TiO2 dan oksida logam tanah jarang atau rare earth oxides (REO). Keterdapatan mineral alam di Indonesia yang mengandung zirkonium (Zr) dan REO tersebar di 13 wilayah mulai dari Provinsi Aceh sampai Papua Barat. Berdasarkan hal tersebut, maka tujuan penelitian adalah melakukan kajian integrasi teknologi pengolahan pasir zirkon lokal yang mengandung TiO2 dan REO. Penelitian dilakukan dengan menganalisis kandungan SOB dalam sampel pasir zirkon dari daerah Landak dan Tumbang Titi Kalimantan Barat serta Bangka menggunakan XRF. Berdasarkan kandungan SOB dalam pasir zirkon tersebut dapat diprediksi bahwa pasir zirkon dari daerah Landak dan Tumbang Titi Kalimantan Barat serta Bangka mengandung mineral zirkon (ZrSiO4), ilmenit (FeTiO3), monasit (LREE, Th)PO4, dan senotim (HREE, Y, Th)PO4. Berbasis jenis mineral tersebut diperoleh hasil kajian berupa diagram alir proses konsep teknologi konsentrat zirkon menjadi ZrO2 (zirkonia) dan ZrOCl2.8H2O (zirkonium oksiklorida) derajat industri serta zirkonia dan zirconium chemicals derajat nuklir, ilmenit menjadi TiO2, monasit menjadi Nd2O3 dan konsentrat Th(OH)4, senotim menjadi Y2O3, Gd2O3 dan konsentrat Th(OH)4 dalam satu kawasan pilot plant atau pabrik yang terintegrasi. Hasil kajian disimpulkan bahwa konsep pengolahan pasir zirkon lokal yang mengandung monasit, senotim, dan ilmenit dapat dilakukan secara terintegrasi dalam satu kawasan pabrik dengan hasil multi produk. Jika hal tersebut dapat direalisasikan di Indonesia dengan tambahan sistem pengolahan air limbah terpadu, maka selain aman bagi lingkungan juga dapat menghemat biaya produksi dan memberikan nilai tambah ekonomi bagi para pemegang izin usaha pertambangan zirkon. ABSTRACTThe existence of zircon (ZrSiO4) in the nature is mostly associated with some of the valuable oxide compounds (VOC), such as TiO2 and rare earth oxides (REO). The existence of natural minerals in Indonesia containing zirconium (Zr) and REO lies in 13 regions, ranging from Aceh to West Papua province. Based on those aforementioned aspects, the goal of this research is to conduct the study of integrated technology of local zircon sand processing containing TiO2 and REO. The study was conducted by analyzing the content of VOC in zircon sand samples from the areas of Landak and Tumbang Titi West Kalimantan and Bangka by using XRF. Based on the content of VOC in this zircon sand, it can be predicted that the zircon sand from the area of Landak and Tumbang Titi West Kalimantan and Bangka contains mineral zircon (ZrSiO4), ilmenite (FeTiO3), monazite (LREE, Th)PO4, and xenotime (HREE, Th)PO4. Based on these types of mineral, the flow chart of beneficiation technology process to increase the concentration of each mineral and the flow chart of zircon concentrate process into ZrO2(zirconia) and ZrOCl2.8H2O (zirconium oxychloride) industrial grade and zirconia and zirconium chemicals nuclear grade, ilmenite into TiO2, monazite into Nd2O3, and Th(OH)4 concentrate, xenotime into Y2O3, Gd2O3, and Th(OH)4 concentrate are obtained in one area of pilot plant or an integrated factory. The results of the study concluded that the concept of local processing of zircon sands containing monazite, xenotime, and ilmenite can be either integrated in the region with the results of multi-product plant. If it can be realized in Indonesia with the addition of an integrated waste water treatment system, then in addition to safe for the environment can also save on production costs and give economic added value for shareholders zircon mining permit


Author(s):  
N. M. P. Low ◽  
L. E. Brosselard

There has been considerable interest over the past several years in materials capable of converting infrared radiation to visible light by means of sequential excitation in two or more steps. Several rare-earth trifluorides (LaF3, YF3, GdF3, and LuF3) containing a small amount of other trivalent rare-earth ions (Yb3+ and Er3+, or Ho3+, or Tm3+) have been found to exhibit such phenomenon. The methods of preparation of these rare-earth fluorides in the crystalline solid form generally involve a co-precipitation process and a subsequent solid state reaction at elevated temperatures. This investigation was undertaken to examine the morphological features of both the precipitated and the thermally treated fluoride powders by both transmission and scanning electron microscopy.Rare-earth oxides of stoichiometric composition were dissolved in nitric acid and the mixed rare-earth fluoride was then coprecipitated out as fine granules by the addition of excess hydrofluoric acid. The precipitated rare-earth fluorides were washed with water, separated from the aqueous solution, and oven-dried.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


Sign in / Sign up

Export Citation Format

Share Document