scholarly journals Frequency of Antimicrobial Resistant Bacteria in Broiler Meat

Author(s):  
Alina L. NISTOR ◽  
Mihaela MIHAI ◽  
Ancuța M. ROTAR ◽  
Carmen R. POP

Antimicrobial resistance (AMR) represents the ability of microorganisms to resist antimicrobial treatments. AMR occurs when microorganisms change in order to reduce or eliminate the effect of antimicrobials, which they were previously susceptible. There were reported animal food products contaminated with antimicrobial resistant strains, like methicillin-resistant Staphylococcus aureus (MRSA), Camylobacter spp., extended spectrum-beta-lactamase (ESBL) producing-Enterobacteriaceae (Salmonella spp., Escherichia coli, Klebsiella spp., Shigella spp. etc.). The aim of this paper is to analyze the frequency of antimicrobial resistant bacteria in broiler meat, at European level. Data were obtained based on the latest EFSA and ECDC Reports, comparing the year 2016 with the year 2018 of the incidence of Salmonella spp., different serovars of Salmonella enterica subs. enterica and Escherichia coli producing ESBL and AmpC, in broiler meat. The incidence of resistant Salmonella spp. showed a decrease between 2016 and 2018. However, the incidence increased for different resistant serovars. Salmonella Infantis showed a decrease in the two years taken into consideration. Regarding the incidence of ESBL E. coli in broiler meat, the results showed an increase for resistance to ceftazidime, ciprofloxacin and ampicillin.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Safia Arbab ◽  
Hanif Ullah ◽  
Weiwei Wang ◽  
Ka Li ◽  
Ali Akbar ◽  
...  

Pathogens are always a threat to the livestock and domestic animals due to their exposure to the contaminated environments. The study was conducted to evaluation of the prevalence of Escherichia coli, Shigella spp., Salmonella spp., and S. aureus, in farm animals (cattle and buffalos). A total of 150 (n = 150) samples were collected from cattle and buffaloes, 60 samples from cows’ and buffalo’s teats milk, 30 of water samples, and 60 of fecal samples isolates from dairy farm animals, which may act as reservoir disseminating such pathogens. Farm hygiene, management, and milking procedure were listed through a questionnaire. The most common pathogens detected in this study was E. coli 88 (58%) and S. aureus 81 (54%), followed by Salmonella spp. 32 (21%), and Shigella spp. 44 (29%), respectively. During the antibiogram studies, the results revealed that the highest number of bacterial isolates showed resistance against ampicillin 50 (56.8%), followed by ciprofloxacin 23 (26.1%) and augmentin 22 (25%) of Escherichia coli and ampicillin 49 (60.4%), cefpodoxime 23 (28.3%), and augmentin 20 (24.6%) of S. aureus. In the case of Salmonella spp., the highest resistance was showed by amoxicillin 16 (50%). In Shigella spp., the highest resistance was shown by ampicillin 16 (36.3%), followed by cefpodoxime and ceftazidime 10 (22.7%). The high frequency of isolates in this investigation with multiple antibiotic resistance ranges from 15. MARI % value of S. aureus and E. coli 15 (12.5%), followed by Salmonella and Shigella spp. ranges from 12 (10%), suggesting the presence of various antibiotic-resistant bacteria as well as highly resistant bacteria. The mean ± SD zone areas for the greater resistance are for E. coli and S. aureus, already known to be multiresistant, followed by Salmonella spp. and Shigella spp., when the zone areas are for the low resistance, and the findings determined that there was a little difference between S. aureus and E. coli.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Surasak Puvabanditsin ◽  
Marianne Jacob ◽  
Maaz Jalil ◽  
Samhita Bhattarai ◽  
Qaiser Patel ◽  
...  

We report a case of a 12-day-old term neonate with extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) meningitis and cerebral abscess. The patient received a 7-day course of antibiotics just few days prior to the infection. The incidence of infections from ESBL-producing E. coli is increasingly emerging. Antimicrobial agents must be vigilantly utilized to prevent the new highly resistant bacteria.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


Author(s):  
Asinamai Athliamai Bitrus ◽  
Peter Anjili Mshelia ◽  
Iliya Dauda Kwoji ◽  
Mohammed Dauda Goni ◽  
Saleh Mohammed Jajere

Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drug-resistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.


2021 ◽  
Vol 11 (5) ◽  
pp. 2246
Author(s):  
Gabriela N. Tenea ◽  
Daniela Olmedo

Consumption of ready-to-eat chopped fruits sold in the streets is a concern, as such activities are outside the regulation and protection in most developing countries. Ready-to-eat mangos are commonly sold as wedges in plastic cups at ambient temperature by mobile vendors in Ecuador, thus they are prone to contamination by bacteria, which poses a safety issue of concern. This work aimed to evaluate the effect of several antimicrobial cocktails consisting of previously designed specific peptide extract combinations from two probiotic bacteria Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis UTNGt28, along with nisin, a commercial food additive, on mango wedges artificially inoculated with a logarithmic phase culture of a five-strain bacterial mixture (FSBM). Preliminary bacteriological analysis of mango wedges purchased from mobile vendors showed the presence of multiple antibiotic-resistant isolates such E. coli spp., Enterobacter spp., Shigella spp., Salmonella spp., along with yeasts and molds, indicating non-compliance with the food safety standards. The results revealed that two antimicrobial cocktails, T2 and T5, containing cell-free supernatant based (CFS) and precipitated peptides (PP) based cocktails from UTNCys5-4 and UTNGt28 strains applied at dose 1:3 (v/v), were the most efficient combinations that inhibited the colonization of total bacterial counts with 56.03% and 55.61% in mango wedges stored with refrigeration. The reduction of total E. coli counts was 64.93%, while Salmonella and Shigella counts were reduced by 98.09% and 97.93%, respectively, when mango wedges were treated with T5-cocktail. The commercial nisin inhibited total Salmonella spp. counts by 40.13%, while E. coli spp. and Shigella spp. diminished by 28.20% and 37.22%, respectively. Moreover, we showed that T5 but not T7 (nisin) damaged the target cell integrity, thereby eventually inhibiting their growth and reproduction. The selected antimicrobial cocktails exerted a bacteriolytic effect by killing the FSBM simultaneously in a fruit matrix and preventing their accumulation in mango wedges. Furthermore, there is a possibility of using peptide combinatorial treatments to combat drug-resistant bacteria in ready-to-eat fruits.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1321
Author(s):  
Laura Musa ◽  
Patrizia Casagrande Proietti ◽  
Maria Luisa Marenzoni ◽  
Valentina Stefanetti ◽  
Tana Shtylla Kika ◽  
...  

The spread of resistant bacteria from livestock to the food industry promoted an increase of alternative poultry production systems, such as organic and antibiotic-free ones, based on the lack of antimicrobial use, except in cases in which welfare is compromised. We aimed to investigate the antibiotic susceptibility of commensal Escherichia coli isolated from organic, antibiotic-free, and conventional broiler farms and slaughterhouses toward several antimicrobials critically important for human health. To assess antimicrobial susceptibility, all E. coli isolates and extended spectrum beta-lactamase (ESBL) E. coli were analysed by the microdilution method. The prevalence of tigecycline, azithromycin and gentamicin E. coli-resistant strains was highest in organic samplings. Conversely, the lowest prevalence of resistant E. coli strains was observed for cefotaxime, ceftazidime and ciprofloxacin in organic systems, representing a significant protective factor compared to conventional systems. All E. coli strains were colistin-susceptible. Contamination of the external environment by drug-resistant bacteria could play a role in the presence of resistant strains detected in organic systems. Of interest is the highest prevalence of cephalosporin resistance of E. coli in conventional samplings, since they are not permitted in poultry. Our results suggest that monitoring of antibiotic resistance of the production chain may be helpful to detect “risks” inherent to different rearing systems.


2015 ◽  
Vol 81 (11) ◽  
pp. 3604-3611 ◽  
Author(s):  
Marc Solà-Ginés ◽  
Juan José González-López ◽  
Karla Cameron-Veas ◽  
Nuria Piedra-Carrasco ◽  
Marta Cerdà-Cuéllar ◽  
...  

ABSTRACTFlies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence ofEscherichia colistrains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producingE. coli. Of these isolates, 23 containedblaCTX-M-1, 18 containedblaCTX-M-14, and 1 containedblaCTX-M-9. ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harboredqnrS. Identical PFGE profiles were found forE. coliisolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenicE. coli(APEC) and 29% were considered extraintestinal pathogenicE. coli(ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistantE. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.


1970 ◽  
Vol 4 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Iraj Alipourfard ◽  
Nilufar Yeasmin Nili

Extended spectrum beta-lactmase (ESBL) producing organisms create a major problem for clinical therapeutics. The frequency of ESBL producing strains among clinical isolates has been steadily increasing over the past few years resulting in limitation of the therapeutic options. These resistant bacteria are emerging world wide as a threat to human health in both the community and hospital settings. -lactamase production by several organisms is the most important mechanism of resistance to beta-lactam antibiotics, such as penicillins and cephalosporins. This study was done to determine the susceptibility of different antimicrobials to ESBL producing Escherichia coli and Klebsiella pneumoniae isolated from wound swabs, blood, urine, fluid, tracheal aspirates and sputum in Shahid Bahonar Hospital of Tehran from July, 2007 to June, 2008. A total of 115 ESBLproducing isolates were obtained from outdoor and indoor patients. Out of 115 isolates, 60% were E. coli and 40% were K. pneumoniae. All ESBL-producing isolates were confirmed using the Clinical and Laboratory Standards Institute (CLSI)-approved double-disk diffusion method. 29.6% of these isolates were collected from medical wards and 24.3% were collected from outdoor. Urine (70.4%) was the main source of ESBL-producing isolates from all patients, followed by blood (16.5%). All isolates were susceptible to both imipenem and meropenem. Of all isolates, 93.9% were susceptible to amikacin. The cephalosporins (1-4 generations) were almost 100% resistant. For Nitrofurantoin, 57.4% were sensitive. High rate resistance (74.8%) was observed to all quinolones tested. Aztreonam, Ampicillin, Co-amoxyclav and Ampicillin/Sulbactam were 100% resistant. This study shows that the frequency of ESBL producing strains of E. coli and K. pneumoniae is high in both hospital and community levels and it has a significant implication for patients’ management. Advance drug resistance surveillance and molecular characteristics of ESBL isolates is necessary to guide the appropriate and judicious antibiotic use. Key words: Extended spectrum beta-lactamase (ESBL), Drug sensitivity, Escherichia coli, Klebseilla pneumoniae DOI: http://dx.doi.org/10.3329/bjmm.v4i1.8467 BJMM 2011; 4(1): 32-36  


2021 ◽  
Vol 12 ◽  
Author(s):  
Lorena Montero ◽  
Jorge Irazabal ◽  
Paul Cardenas ◽  
Jay P. Graham ◽  
Gabriel Trueba

In cities across the globe, the majority of wastewater – that includes drug resistant and pathogenic bacteria among other contaminants – is released into streams untreated. This water is often subsequently used for irrigation of pastures and produce. This use of wastewater-contaminated streams allows antibiotic-resistant bacteria to potentially cycle back to humans through agricultural products. In this study, we investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from produce and irrigation water across 17 provinces of Ecuador. A total of 117 vegetable samples, 119 fruit samples, and 38 irrigation water samples were analyzed. Results showed that 11% of the samples were positive for E. coli including 11 irrigation water samples (29%), and samples of 13 vegetables (11%), and 11 fruits (9%). Among the 165 E. coli isolates cultured, 96 (58%) had the ESBL phenotype, and 58% of ESBL producing E. coli came from irrigation water samples, 11% from vegetables, and 30% from fruits. The blaCTX–M–55, blaCTX–M 65, and blaCTX–M 15 genes were the most frequently found gene associated with the ESBL phenotype and coincided with the blaCTX–M alleles associated with human infections in Ecuador. Three isolates had the mcr-1 gene which is responsible for colistin resistance. This report provides evidence of the potential role of irrigation water in the growing antimicrobial resistance crisis in Ecuador.


2021 ◽  
Vol 319 ◽  
pp. 02014
Author(s):  
Khadija Ouarrak ◽  
Abdelkader Chahlaoui ◽  
Hajar El Omari ◽  
Imane Taha ◽  
Rachid Sammoudi ◽  
...  

The present study was conducted to better understand the specific contingency of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from urban waters of Wadi Ouislane of the city of Meknes, compared to isolates from patients hospitalized in the resuscitation department at Mohamed V Hospital in Meknes, Morocco. These antibiotic-resistant bacteria have become ubiquitous in effluents, creating increasing concern about their potential impact on human and animal health and the environment. We took four samples of wastewater representative of a day, effluents of the wadi Ouislane. They were analyzed for indicator germs of fecal pollution, namely total coliforms (TC) and fecal coliforms (FC). Bacteria were enumerated by the dilution-filtration technique and by incorporation in solid medium in supercooling. However, four bacteriological samples, taken for clinical purposes from hospitalized patients, were performed at the medical analysis laboratory of Mohamed V Hospital in Meknes. Analysis of our results showed that ESBL-producing E. coli bacteria isolated from our effluents had the same antibiotic resistance profiles as those from hospitalized patients. Urban wastewater discharges into the environment contribute to the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli that may pose health risks to the population.


Sign in / Sign up

Export Citation Format

Share Document