scholarly journals The Effect of Different Doses of Blue Light on the Biometric Traits and Photosynthesis of Dill Plants

2016 ◽  
Vol 44 (1) ◽  
pp. 34-40
Author(s):  
Barbara FRĄSZCZAK

The supplementation of blue light to red light enhanced plant growth compared with the use of red alone. The aim of thestudy was to determine the effect of different doses of blue light on the biometric traits and photosynthesis of dill plants. Theplants were grown in pots in a growth chamber. They were grown in red light (100 μmol m-2 s-1) and blue light (from 10 to 50μmol m-2 s-1) in five combinations. Light emitting diode modules were the source of light. The plants were evaluated every 7days during vegetation, for the first time - seven days after germination and later on the 14th, 21st and 28th day aftergermination. The share of blue light in the spectrum significantly influenced the biometric traits of the dill plants. Itsignificantly inhibited the elongation growth of the plants and negatively affected the increase in fresh weight. A small dose ofblue light (20%) had positive effect on the plants’ area. The research did not reveal a simple relationship between the amountof blue light and dry weight yield. The value of physiological indexes depended both on the combination and measurementtime. The plants from the combination with 30% blue light were characterised by the greatest photosynthesis intensity. Aneffective share of blue light in the spectrum may range from 10 to 30% in relation to red light and depends on the plant’sdevelopment phase and on the result we want to achieve in the cultivation of plants.

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Chang Park ◽  
Nam Kim ◽  
Jong Park ◽  
Sook Lee ◽  
Jong-Won Lee ◽  
...  

In this study, we investigated optimal light conditions for enhancement of the growth and accumulation of glucosinolates and phenolics in the sprouts of canola (Brassica napus L.). We found that the shoot lengths and fresh weights of red light-irradiated sprouts were higher than those of sprouts exposed to white, blue, and blue + red light, whereas root length was not notably different among red, blue, white, and blue + red light treatments. The accumulations of total glucosinolates in plants irradiated with white, blue, and red lights were not significantly different (19.32 ± 0.13, 20.69 ± 0.05, and 20.65 ± 1.70 mg/g dry weight (wt.), respectively). However, sprouts exposed to blue + red light contained the lowest levels of total glucosinolates (17.08 ± 0.28 mg/g dry wt.). The accumulation of total phenolic compounds was the highest in plants irradiated with blue light (3.81 ± 0.08 mg/g dry wt.), 1.33 times higher than the lowest level in plants irradiated with red light (2.87 ± 0.05 mg/g dry wt.). These results demonstrate that red light-emitting diode (LED) light is suitable for sprout growth and that blue LED light is effective in increasing the accumulation of glucosinolates and phenolics in B. napus sprouts.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5317
Author(s):  
Jingshan Hou ◽  
Wenxiang Yin ◽  
Langping Dong ◽  
Yang Li ◽  
Yufeng Liu ◽  
...  

In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photoluminescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm, which match well with commercial UV and blue light-emitting diode (LED) chips. When excited by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+ phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide color gamut of 127.56% NTSC (National Television Standard Committee). The results show that red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and display backlight.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Tomohiro Jishi ◽  
Ryo Matsuda ◽  
Kazuhiro Fujiwara

Cos lettuce was grown under different spectral photon flux density distribution (SPFD) change patterns with blue- and/or red light-emitting diode (LED) irradiation with a 24-hour cycle. Twelve treatments were designed with a combination of four relative SPFD (RSPFD) change patterns and three photosynthetic photon flux density (PPFD) levels. The RSPFD change patterns were as follows: BR/BR, simultaneous blue- and red-light irradiation (BR) for 24 h; R/BR, red-light monochromatic irradiation (R) for 12 h followed by 12 hours of BR; B/BR, blue-light monochromatic irradiation (B) for 12 hours followed by 12 hours of BR; and B/R, 12 hours of B followed by 12 hours of R. Each RSPFD change pattern was conducted at three daily average photosynthetic photon flux densities (PPFDave) of 50, 100, and 200 µmol·m−2·s−1. The RSPFD change patterns that included B (B/BR and B/R) resulted in elongated leaves. A low ratio of active phytochrome to total phytochrome under B was considered the reason for leaf elongation. Shoot dry weight was significantly greater under the RSPFD change patterns that included B when the PPFDave was 200 µmol·m−2·s−1. The leaf elongation caused by B would have increased the amount of light received and thereby promoted growth. However, excessive leaf elongation caused the plants to fall, and growth was not promoted under the RSPFD change patterns that included B when the PPFDave was 50 µmol·m−2·s−1. Thus, 12-hour B promoted growth under conditions in which leaf elongation leads to increases in the amount of light received.


HortScience ◽  
2010 ◽  
Vol 45 (12) ◽  
pp. 1809-1814 ◽  
Author(s):  
Masahumi Johkan ◽  
Kazuhiro Shoji ◽  
Fumiyuki Goto ◽  
Shin-nosuke Hashida ◽  
Toshihiro Yoshihara

In this study, we determined the effects of raising seedlings with different light spectra such as with blue, red, and blue + red light-emitting diode (LED) lights on seedling quality and yield of red leaf lettuce plants. The light treatments we used were applied for a period of 1 week and consisted of 100 μmol·m−2·s−1 of blue light, simultaneous irradiation with 50 μmol·m−2·s−1 of blue light and 50 μmol·m−2·s−1 of red light, and 100 μmol·m−2·s−1 of red light. At the end of the light treatment, that is 17 days after sowing (DAS), the leaf area and shoot fresh weight (FW) of the lettuce seedlings treated with red light increased by 33% and 25%, respectively, and the dry weight of the shoots and roots of the lettuce seedlings treated with blue-containing LED lights increased by greater than 29% and greater than 83% compared with seedlings grown under a white fluorescent lamp (FL). The shoot/root ratio and specific leaf area of plants irradiated with blue-containing LED lights decreased. At 45 DAS, higher leaf areas and FWs were obtained in lettuce plants treated with blue-containing LED lights. The total chlorophyll (Chl) contents in lettuce plants treated with blue-containing and red lights were less than that of lettuce plants treated with FL, but the Chl a/b ratio and carotenoid content increased under blue-containing LED lights. Polyphenol contents and the total antioxidant status (TAS) were greater in lettuce seedlings treated with blue-containing LED lights than in those treated with FL at 17 DAS. The higher polyphenol contents and TAS in lettuce seedlings at 17 DAS decreased in lettuce plants at 45 DAS. In conclusion, our results indicate that raising seedlings treated with blue light promoted the growth of lettuce plants after transplanting. This is likely because of high shoot and root biomasses, a high content of photosynthetic pigments, and high antioxidant activities in the lettuce seedlings before transplanting. The compact morphology of lettuce seedlings treated with blue LED light would be also useful for transplanting.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 380-382 ◽  
Author(s):  
Ruey-Chi Jao ◽  
Wei Fang

Effects of concurrent vs. alternating blue and red light using light-emitting diodes (LEDs) on the photomixotrophic growth of potato plantlets in vitro were investigated. All seven treatments had the same 5.53 mol·m-2 daily light integral (DLI), photoperiod (16-hour day/8-hour night) and similar proportion of red light (45%) and blue light (55%). Results showed that the fresh/dry weight accumulation of potato plantlets in vitro under the concurrent blue and red light was superior than that under the alternating blue and red light, indicating that the simultaneous coexistence of blue and red light are necessary for optimum plantlet growth. Low PPF with long duration was better than high PPF with short duration under same DLI. Within the concurrent blue and red light treatments, when the duration of blue light was shorter than that of red light, timing of the blue light affected the growth of potato plantlets in vitro. Providing blue and red light together at the beginning of the photoperiod resulted in optimal growth, however plantlets illuminated with alternately blue and red light had significantly less fresh/dry weight accumulation.


2020 ◽  
Vol 30 (5) ◽  
pp. 564-569
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Seedlings may be grown indoors where environmental conditions can be precisely controlled to ensure consistent and reliable production. The optimal spectrum for production under sole-source lighting is currently unknown. Far-red light (λ = 700–800 nm) typically is not a significant part of the spectrum of light-emitting diode (LED) grow lights. However, far-red light is photosynthetically active and can enhance leaf elongation, which may result in larger leaves and increased light interception. We hypothesized that adding far-red light to sole-source lighting would increase the growth of ‘Dalmatian Peach’ foxglove (Digitalis purpurea) seedlings grown under white LED lights, potentially shortening production times. Our objective was to evaluate the effect of far-red light intensities, ranging from 4.0 to 68.8 µmol·m−2·s−1, on the growth and morphology of foxglove seedlings. Foxglove seedlings were grown in a growth chamber with a photosynthetic photon flux density (PPFD) of 186 ± 6.4 μmol·m−2·s−1 and supplemental far-red light intensities ranging from 4.0 to 68.8 µmol·m−2·s−1. As far-red light increased, shoot dry weight, root dry weight, plant height, and plant height/number of leaves increased by 38% (P = 0.004), 20% (P = 0.029), 38% (P = 0.025), and 34% (P = 0.024), respectively, while root weight fraction decreased 16% (P = 0.034). Although we expected supplemental far-red light to induce leaf and/or stem expansion, specific leaf area and compactness (two measures of morphology) were unaffected. Because a 37% increase in total photon flux density (PPFD plus far-red light) resulted in a 34.5% increase in total plant dry weight, the increased growth likely was due to increased photosynthesis rather than a shade-acclimation response. The growth response was linear across the 4.0 to 68.8 µmol·m−2·s−1 range of far-fed light tested, so we were unable to determine a saturating far-red photon flux density.


2020 ◽  
Vol 3 (2) ◽  
pp. 161-176
Author(s):  
Jillian A Forsyth ◽  
Lauren A Erland ◽  
Paul R Shipley ◽  
Susan J Murch

Light mediates plant growth through diverse mechanisms and signaling networks including plant growth regulators (PGRs). We hypothesized that a novel class of PGRs, the indoleamines, are plant signaling molecules that perceive changes in light composition and initiate a cascade of metabolic responses. We used three Scutellaria model species (skullcap): S. lateriflora, S. galericulata and S. racemosa that produce high levels of melatonin and serotonin to investigate this hypothesis. Axenic Scutellaria cultures were exposed to red, blue, green or full spectrum white light spectra provided by light emitting diode (LED) lighting systems, or daylight fluorescent bulbs. Melatonin (MEL), serotonin (5HT), abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA), were quantified by liquid chromatography with tandem mass spectrometry. Melatonin was detected consistently in plants grown under blue light in all species of Scutellaria. In S. galericulata, significant quantities of ABA were detected in plants grown under white light but not detected in plants grown under other light spectra.  In timeline studies of S. racemosa plants exposed to limited red or blue light spectra had significantly reduced levels of tryptamine (TRM), 5HT and MEL in the shoots initially but melatonin was detected after 12 hours and quantifiable amounts of 5HT were detected after 7 days. Supplementation of the culture medium with MEL or 5HT did not change the pattern of MEL in blue light grown cultures but did change patterns of 5HT accumulation.  5HT was highest in plants grown under red light immediately after culture and decreased over 7 days.  These data indicate that the relative amounts of MEL and 5HT are responsive to light spectra and redirect metabolic resources to enable plant adaptations to changing environments.   


HortScience ◽  
2009 ◽  
Vol 44 (5) ◽  
pp. 1494-1497 ◽  
Author(s):  
Hiroshi Hamamoto ◽  
Keisuke Yamazaki

We investigated the reproductive responses of three cultivars of short-day plants to day-extension and night-break treatment with red, blue, and green light-emitting diodes (LEDs). The plants examined were all Malvaceae species: two cultivars of okra [Abelmoschus esculentus (L.) Moench.] and a cultivar of native rosella [Abelmoschus moschatus ssp. tuberosus (Span.) Borss.]. To create day extension or night break, we provided supplemental light from LED panels with peak photon emissions of 470 (blue), 520 (green), or 650 (red) nm. Day-extension treatment using red or blue LEDs inhibited flower and bud appearances; the response was especially pronounced with red LEDs. Night-break treatment with red LEDs also delayed flower bud appearance, but night break with blue LEDs did not produce a clear effect. Night break with green light delayed flowering more strongly than blue light but a little less than red light. We concluded that the dark period-regulated reproductive processes of these plants are most sensitive to disruption by red light, closely followed by green light, but that they are insensitive to blue light, especially when the exposure period is short.


HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 380-383 ◽  
Author(s):  
Neil C. Yorio ◽  
Gregory D. Goins ◽  
Hollie R. Kagie ◽  
Raymond M. Wheeler ◽  
John C. Sager

Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 μmol·m-2·s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.


Sign in / Sign up

Export Citation Format

Share Document