scholarly journals Effects of Light-Emitting Diodes on the Accumulation of Glucosinolates and Phenolic Compounds in Sprouting Canola (Brassica napus L.)

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Chang Park ◽  
Nam Kim ◽  
Jong Park ◽  
Sook Lee ◽  
Jong-Won Lee ◽  
...  

In this study, we investigated optimal light conditions for enhancement of the growth and accumulation of glucosinolates and phenolics in the sprouts of canola (Brassica napus L.). We found that the shoot lengths and fresh weights of red light-irradiated sprouts were higher than those of sprouts exposed to white, blue, and blue + red light, whereas root length was not notably different among red, blue, white, and blue + red light treatments. The accumulations of total glucosinolates in plants irradiated with white, blue, and red lights were not significantly different (19.32 ± 0.13, 20.69 ± 0.05, and 20.65 ± 1.70 mg/g dry weight (wt.), respectively). However, sprouts exposed to blue + red light contained the lowest levels of total glucosinolates (17.08 ± 0.28 mg/g dry wt.). The accumulation of total phenolic compounds was the highest in plants irradiated with blue light (3.81 ± 0.08 mg/g dry wt.), 1.33 times higher than the lowest level in plants irradiated with red light (2.87 ± 0.05 mg/g dry wt.). These results demonstrate that red light-emitting diode (LED) light is suitable for sprout growth and that blue LED light is effective in increasing the accumulation of glucosinolates and phenolics in B. napus sprouts.

2020 ◽  
Vol 140 (7) ◽  
pp. S84
Author(s):  
S. Yu ◽  
M. You ◽  
W. Yang ◽  
C. Cheng ◽  
H. Chang ◽  
...  

2011 ◽  
Vol 04 (01) ◽  
pp. 45-52 ◽  
Author(s):  
GUANGDA LIU ◽  
CHANGE PAN ◽  
KAI LI ◽  
YUAN TAN ◽  
XUNBIN WEI

In this paper, we studied portable blue and red light-emitting-diode (LED) light sources in phototherapy for mild to moderate acne vulgaris to evaluate the efficacy and tolerance of patients. Patients, randomly divided into blue and red groups, received either blue or red LED phototherapy twice a week for four weeks. After complete treatment, the number of lesions reduced by 71.4% in the blue group, in contrast to 19.5% in the red group. No obvious side effects were observed during and one month after the treatment, except for some mild dryness mentioned by several patients.


2020 ◽  
Vol 30 (5) ◽  
pp. 564-569
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Seedlings may be grown indoors where environmental conditions can be precisely controlled to ensure consistent and reliable production. The optimal spectrum for production under sole-source lighting is currently unknown. Far-red light (λ = 700–800 nm) typically is not a significant part of the spectrum of light-emitting diode (LED) grow lights. However, far-red light is photosynthetically active and can enhance leaf elongation, which may result in larger leaves and increased light interception. We hypothesized that adding far-red light to sole-source lighting would increase the growth of ‘Dalmatian Peach’ foxglove (Digitalis purpurea) seedlings grown under white LED lights, potentially shortening production times. Our objective was to evaluate the effect of far-red light intensities, ranging from 4.0 to 68.8 µmol·m−2·s−1, on the growth and morphology of foxglove seedlings. Foxglove seedlings were grown in a growth chamber with a photosynthetic photon flux density (PPFD) of 186 ± 6.4 μmol·m−2·s−1 and supplemental far-red light intensities ranging from 4.0 to 68.8 µmol·m−2·s−1. As far-red light increased, shoot dry weight, root dry weight, plant height, and plant height/number of leaves increased by 38% (P = 0.004), 20% (P = 0.029), 38% (P = 0.025), and 34% (P = 0.024), respectively, while root weight fraction decreased 16% (P = 0.034). Although we expected supplemental far-red light to induce leaf and/or stem expansion, specific leaf area and compactness (two measures of morphology) were unaffected. Because a 37% increase in total photon flux density (PPFD plus far-red light) resulted in a 34.5% increase in total plant dry weight, the increased growth likely was due to increased photosynthesis rather than a shade-acclimation response. The growth response was linear across the 4.0 to 68.8 µmol·m−2·s−1 range of far-fed light tested, so we were unable to determine a saturating far-red photon flux density.


2016 ◽  
Vol 44 (1) ◽  
pp. 34-40
Author(s):  
Barbara FRĄSZCZAK

The supplementation of blue light to red light enhanced plant growth compared with the use of red alone. The aim of thestudy was to determine the effect of different doses of blue light on the biometric traits and photosynthesis of dill plants. Theplants were grown in pots in a growth chamber. They were grown in red light (100 μmol m-2 s-1) and blue light (from 10 to 50μmol m-2 s-1) in five combinations. Light emitting diode modules were the source of light. The plants were evaluated every 7days during vegetation, for the first time - seven days after germination and later on the 14th, 21st and 28th day aftergermination. The share of blue light in the spectrum significantly influenced the biometric traits of the dill plants. Itsignificantly inhibited the elongation growth of the plants and negatively affected the increase in fresh weight. A small dose ofblue light (20%) had positive effect on the plants’ area. The research did not reveal a simple relationship between the amountof blue light and dry weight yield. The value of physiological indexes depended both on the combination and measurementtime. The plants from the combination with 30% blue light were characterised by the greatest photosynthesis intensity. Aneffective share of blue light in the spectrum may range from 10 to 30% in relation to red light and depends on the plant’sdevelopment phase and on the result we want to achieve in the cultivation of plants.


2021 ◽  
Vol 23 (2) ◽  
pp. 112-120
Author(s):  
Saniatus Solekhah ◽  
Nora Augustien K ◽  
Bambang Prijanto

[THE EFFECT OF LIGHT EMITTING DIODE (LED) IRRADIATION DURATION ON THE GROWTH OF SUNFLOWER (Helianthus annuus L.) MICROGREENS PLANT ON VARIOUS PLANTING MEDIA]. The conversion of agricultural land into residential and office buildings causes a decrease in agricultural land every year so the development of indoor plant cultivation with the concept of urban farming, such as microgreens. Microgreens are plants in the period after germination, usually between 7-14 days. Microgreens have a nutrient content of at least 40 times higher than when they are fully grown. Sunflower plants are one of the plants that have been developed as microgreens. Sunflower (Helianthus annuus L.) is an introduced plant from America. This flower is bright yellow with a large flower head with a diameter of up to 30 cm. LED light is used to help the plant growth process that is carried out indoors. This research was conducted indoors is located in Bratang Wetan 1 No. 19c, Wonokromo, Surabaya from March 2021 to May 2021. The method used in this research is a Completely Randomized Design (CRD) system consisting of 2 factors with 3 replications. The first factor is the length of irradiation which consists of 4 levels of treatment and the second factor is the type of planting media which consists of 3 levels of treatment. The results showed that the combination of 16 hours irradiation time with soil planting medium was able to increase the growth of Sunflower microgreens plants on the variables of cotyledon width, wet weight, dry weight, and chlorophyll test.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 77
Author(s):  
Chang Ha Park ◽  
Ye Eun Park ◽  
Hyeon Ji Yeo ◽  
Jae Kwang Kim ◽  
Sang Un Park

Recent improvements in light-emitting diode (LED) technology afford an excellent opportunity to investigate the relationship between different light sources and plant metabolites. Accordingly, the goal of the present study was to determine the effect of different LED (white, blue, and red) treatments on the contents of glucosinolates (glucoiberin, gluconapin, sinigrin, gluconasturtiin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, glucobrassicin, and neoglucobrassicin) and phenolic compounds (4-hydroxybenzonate, catechin, chlorogenic acid, caffeate, gallate, sinapate, and quercetin) in Brassica juncea sprouts. The sprouts were grown in a growth chamber at 25 °C under irradiation with white, blue, or red LED with a flux rate of 90 μmol·m−2·s−1 and a long-day photoperiod (16 h light/8 h dark cycle). Marked differences in desulfoglucosinolate contents were observed in response to treatment with different LEDs and different treatment durations. In addition, the highest total desulfoglucosinolate content was observed in response to white LED light treatment, followed by treatment with red LED light, and then blue LED light. Among the individual desulfoglucosinolates identified in the sprouts, sinigrin exhibited the highest content, which was observed after three weeks of white LED light treatment. The highest total phenolic contents were recorded after one week of white and blue LED light treatment, whereas blue LED irradiation increased the production of most of the phenolic compounds identified, including 4-hydroxybenzonate, gallate, sinapate, caffeate, quercetin, and chlorogenic acid. The production of phenolics decreased gradually with increasing duration of LED light treatment, whereas anthocyanin accumulation showed a progressive increase during the treatment. These findings indicate that white LED light is appropriate for glucosinolate accumulation, whereas blue LED light is effective in increasing the production of phenolic compounds in B. juncea sprouts.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1399-1405
Author(s):  
Qinglu Ying ◽  
Yun Kong ◽  
Youbin Zheng

To investigate plant growth and quality responses to different light spectral combinations, cabbage (Brassica oleracea L. var. capitata f. rubra), kale (Brassica napus L. ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby steak’) microgreens were grown in a controlled environment using sole-source light with six different spectra: 1) FL: cool white fluorescent light; 2) BR: 15% blue and 85% red light-emitting diode (LED); 3) BRFRL: 15% blue, 85% red, and 15.5 µmol·m−2·s−1 far-red (FR) LED; 4) BRFRH: 15% blue, 85% red, and 155 µmol·m−2·s−1 FR LED; 5) BGLR: 9% blue, 6% green, and 85% red LED; and 6) BGHR: 5% blue, 10% green, and 85% red LED. For all the light treatments, the total photosynthetic photon flux density (PPFD) was set at ≈330 µmol·m−2·s−1 under a 17-hour photoperiod, and the air temperature was ≈21 °C with 73% relative humidity (RH). At harvest, BR vs. FL increased plant height for all the tested species except arugula, and enlarged cotyledon area for kale and arugula. Adding high-intensity FR light to blue and red light (i.e., BRFRH) further increased plant height for all species, and cotyledon area for mustard, but it did not affect the fresh or dry biomass for any species. Also, BRFRH vs. BR increased cotyledon greenness for green-leafed species (i.e., arugula, cabbage, and kale), and reduced cotyledon redness for red-leafed mustard. However, BGLR, BGHR, and BRFRL, compared with BR, did not affect plant height, cotyledon area, or fresh or dry biomass. These results suggest that the combination of 15% blue and 85% red LED light can potentially replace FL as the sole light source for indoor production of the tested microgreen species. Combining high-intensity FR light, rather than low-level (≤10%) green light, with blue and red light could be taken into consideration for the optimization of LED light spectral quality in microgreen production under environmental conditions similar to this experiment.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 335 ◽  
Author(s):  
Wei-Hsiung Tseng ◽  
Diana Juan ◽  
Wei-Cheng Hsiao ◽  
Cheng-Han Chan ◽  
Hsin-Yi Ma ◽  
...  

In this study, our proposed ultraviolet light-emitting diode (UV LED) mosquito-trapping lamp is designed to control diseases brought by insects such as mosquitoes. In order to enable the device to efficiently catch mosquitoes in a wider area, a secondary freeform lens (SFL) is designed for UV LED. The lens is mounted on a 3 W UV LED light bar as a mosquito-trapping lamp of the new UV LED light bar module to achieve axially symmetric light intensity distribution. The special SFL is used to enhance the trapping capabilities of the mosquito-trapping lamp. The results show that when the secondary freeform surface lens is applied to the experimental outdoor UV LED mosquito-trapping lamp, the trapping range can be expanded to 100π·m2 and the captured mosquitoes increased by about 300%.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lung-Chien Chen ◽  
Yi-Tsung Chang ◽  
Ching-Ho Tien ◽  
Yu-Chun Yeh ◽  
Zong-Liang Tseng ◽  
...  

AbstractThis work presents a method for obtaining a color-converted red light source through a combination of a blue GaN light-emitting diode and a red fluorescent color conversion film of a perovskite CsPbI3/TOPO composite. High-quality CsPbI3 quantum dots (QDs) were prepared using the hot-injection method. The colloidal QD solutions were mixed with different ratios of trioctylphosphine oxide (TOPO) to form nanowires. The color conversion films prepared by the mixed ultraviolet resin and colloidal solutions were coated on blue LEDs. The optical and electrical properties of the devices were measured and analyzed at an injection current of 50 mA; it was observed that the strongest red light intensity was 93.1 cd/m2 and the external quantum efficiency was 5.7% at a wavelength of approximately 708 nm when CsPbI3/TOPO was 1:0.35.


Sign in / Sign up

Export Citation Format

Share Document