Storage Ponds Application for Flood Control, Hydropower Generation and Water Supply

2019 ◽  
Vol 10 (4) ◽  
pp. 219 ◽  
Author(s):  
Avin Dadfar ◽  
Mohsen Besharat ◽  
Helena Margarida Ramos
2020 ◽  
Vol 12 (18) ◽  
pp. 7822
Author(s):  
Ahmed Rafique ◽  
Steven Burian ◽  
Daniyal Hassan ◽  
Rakhshinda Bano

In this study, a model was created with the Water Evaluation and Planning (WEAP) System and used to explore the benefits of altering the operations of Tarbela Dam in terms of reliability, resilience, and vulnerability (RRV) for the three objectives of irrigation supply, hydropower generation, and flood control. Sensitivity analysis and logical reasoning with operators identified a feasible operational rule curve for testing using the integrated performance analysis. The reservoir performance for the altered operations was compared to the baseline performance following current operations for both historical and projected future climate and water demand conditions. Key simulation results show that the altered operations strategy tested under historical climate and water demand conditions would increase RRV by 17%, 67%, and 7%, respectively, for the water supply objective and 34%, 346%, and 22%, respectively, for hydropower generation. For projected future conditions, the proposed operations strategy would increase RRV by 7%, 219%, and 11%, respectively, for water supply and 19%, 136%, and 13% for hydropower generation. Synthesis of the results suggests significant benefits for reliability and resilience of water supply and hydropower are possible with slight operational adjustments. Overall, the integrated performance analysis supports the need to develop an optimized operations rule for Tarbela to adapt to projected climate and demand scenarios.


Author(s):  
Chen Wu ◽  
Yibo Wang ◽  
Jing Ji ◽  
Pan Liu ◽  
Liping Li ◽  
...  

Reservoirs play important roles in hydropower generation, flood control, water supply, and navigation. However, the regulation of reservoirs is challenged due to their adverse influences on river ecosystems. This study uses ecoflow as an ecological indicator for reservoir operation to indicate the extent of natural flow alteration. Three reservoir optimization models are established to derive ecological operating rule curves. Model 1 only considers the maximization of average annual hydropower generation and the assurance rate of hydropower generation. Model 2 incorporates ecological objectives and constraints. Model 3 not only considers the hydropower objectives but also simulates the runoff and calculates the ecological indicator values of multiple downstream stations. The three models are optimized by a simulation-optimization framework. The reservoir ecological operating rule curves are derived for the case study of China's Three Gorges Reservoir. The results represent feasible schemes for reservoir operation by considering both hydropower and ecological demands. The average annual power generation and assurance rate of a preferred optimized scheme for Model 3 are increased by 1.06% and 2.50%, respectively. Furthermore, ecological benefits of the three hydrologic stations are also improved. In summary, the ecological indicator ecoflow and optimization models could be helpful for reservoir ecological operations.


2014 ◽  
Vol 9 (4) ◽  
pp. 509-518
Author(s):  
R. Shahsavan ◽  
M. Shourian

Water storage using dams is a perfect solution for agricultural, industrial, drinking water supply, flood control, hydroelectric power generation, and other purposes. Integrated management of water resources involves the development, management, protection, regulation and beneficial use of surface- and ground- water resources. The reliability of water supply reservoirs depends on several factors, e.g. the physical characteristics of the reservoir, the time series of river discharge, climatic conditions, the amount of demand, and the method of operation. If a portion of a dam's volume is kept empty for flood control, the confidence values of taking the bottom water demand will be reduced. In this paper, a yield-storage model developed in a MATLAB software environment is used to determine the optimal capacity of Darband dam in northeast Iran (the study phase). The reservoir's performance with respect to demand downstream, e.g. from industry and agriculture, and for potable use, was studied, and the results compared for scenarios in flood control volume change conditions. The results show that, for a capacity of 80 Mm3, the reliability values for meeting agricultural, environmental, and potable water demand are estimated at 0.922, 0.927, and 0.942, respectively. If the reservoir's capacity is changed from 80 to 350 Mm3, the reliability values increase by only about 7%.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2542 ◽  
Author(s):  
Mufeng Chen ◽  
Zengchuan Dong ◽  
Wenhao Jia ◽  
Xiaokuan Ni ◽  
Hongyi Yao

The multi-objective optimal operation and the joint scheduling of giant-scale reservoir systems are of great significance for water resource management; the interactions and mechanisms between the objectives are the key points. Taking the reservoir system composed of 30 reservoirs in the upper reaches of the Yangtze River as the research object, this paper constructs a multi-objective optimal operation model integrating four objectives of power generation, ecology, water supply, and shipping under the constraints of flood control to analyze the inside interaction mechanisms among the objectives. The results are as follows. (1) Compared with single power generation optimization, multi-objective optimization improves the benefits of the system. The total power generation is reduced by only 4.09% at most, but the water supply, ecology, and shipping targets are increased by 98.52%, 35.09%, and 100% at most under different inflow conditions, respectively. (2) The competition between power generation and the other targets is the most obvious; the relationship between water supply and ecology depends on the magnitude of flow required by the control section for both targets, and the restriction effect of the shipping target is limited. (3) Joint operation has greatly increased the overall benefits. Compared with the separate operation of each basin, the benefits of power generation, water supply, ecology, and shipping increased by 5.50%, 45.99%, 98.49%, and 100.00% respectively in the equilibrium scheme. This study provides a widely used method to analyze the multi-objective relationship mechanism, and can be used to guide the actual scheduling rules.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 217-228 ◽  
Author(s):  
Bertrand Richaud ◽  
Henrik Madsen ◽  
Dan Rosbjerg ◽  
Claus B. Pedersen ◽  
Long L. Ngo

Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real-time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation of the long-term objectives from the optimised rule curves. The method is illustrated for optimisation of the Hoa Binh reservoir in Vietnam. The approach is proven efficient to trade-off conflicting objectives. Selected by a Pareto optimisation method, the preferred optimum is able to mitigate the floods in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality of the forecast is addressed. The results illustrate the importance of a sufficient forecast lead time to start pre-releasing water in flood situations.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 677 ◽  
Author(s):  
Irene Fernández García ◽  
David Ferras ◽  
Aonghus McNabola

The potential of micro-hydropower generation has been evaluated in seven community-owned rural water supply networks (CORWSN) in Ireland. The replacement of the existing infrastructure in place to reduce pressure in the networks with micro-hydropower turbines (Scenario 1) was considered. New potential locations for additional pressure reduction were also considered (Scenario 2). An assessment of the energy potential and economic viability of each site was carried out, including quantification of leakage reduction impacts. While only one of the seven CORWSNs showed two potential sites with power higher than 1 kW, the power generated can still have significant impacts on local energy demands. The estimated total energy saved in Scenario 2 ranged from 0.63 MWh year−1 to 84.5 MWh year−1 according to the micro-hydropower potential in each CORWSN. Furthermore, water savings from 4348 € m−3 to 73,264 € m−3 were estimated due to the reduction of leakage volume after installing micro-hydropower turbines at the potential sites detected in Scenario 2. Thus, the water cost saving associated to the reduction of leakage volume makes the incorporation of this element in the networks feasible.


2020 ◽  
Author(s):  
Lin Zhang ◽  
Wei Ding ◽  
Guoli Wang

<p>During flood seasons, the water head of the reservoir is kept in flood limited water level (FLWL) to satisfy the flood control objective, but this runs counter to the need for hydropower generation to maintain a high water-head. This paper focuses on the optimal hedging rules by setting an appropriate FLWL to maximize the benefit of hydropower without increasing the flood damage and raise the water level at the end of flood for non-flood season/future use. Two-stage hydropower functions considering the constraint conditions which include the downstream environmental flow and installed capacity are built. On the basis of studying the marginal utilities of the two-stage hydropower functions, the competitive and collaborative relationships between flood damage and hydropower benefit were analyzed qualitatively. A two-stage reservoir operation model with two objectives that are minimum flood damage and maximum hydropower generation is developed, which considers streamflow forecast uncertainty and acceptable flood risk. The derived OHR from the model can be used to make trade-offs between flood damage and hydropower benefit under different levels of streamflow forecast uncertainty or acceptable risk. Finally, the analysis is applied to the Nierji Reservoir in the north of China. The results indicate that the OHR can increase hydropower generation 1.57x106kw·h and decrease the volume of abandoned water30.04x106m3 average annual.</p>


2020 ◽  
Author(s):  
Gokcen Uysal ◽  
Rodolfo-Alvarado Montero ◽  
Dirk Schwanenberg ◽  
Aynur Sensoy

<p>Streamflow forecasts include uncertainties related with initial conditions, model forcings, hydrological model structure and parameters. Ensemble streamflow forecasts can capture forecast uncertainties by having spread forecast members. Integration of these forecast members into real-time operational decision models which deals with different objectives such as flood control, water supply or energy production are still rare. This study aims to use ensemble streamflows as input of the recurrent reservoir operation problem which can incorporate (i) forecast uncertainty, (ii) forecasts with a higher lead-time and (iii) a higher stability. A related technique for decision making is multi-stage stochastic optimization using scenario trees, referred to as Tree-based Model Predictive Control (TB-MPC). This approach reduces the number of ensemble members by its tree generation algorithms using all trajectories and then proper problem formulation is set by Multi-Stage Stochastic Programming. The method is relatively new in reservoir operation, especially closed-loop hindcasting experiments and its assessment is quite rare in the literature. The aim of this study is to set a TB-MPC based real-time reservoir operation with hindcasting experiments. To that end, first hourly deterministic streamflows having one single member are produced using an observed flood hydrograph. Deterministic forecasts are tested with conventional deterministic optimization setup. Secondly, hourly ensemble streamflow forecasts having a lead-time up to 48 hours are produced by a novel approach which explicitly presents dynamic uncertainty evolution. Produced ensemble members are directly provided to input to related technique. Uncertainty becomes much larger when managing small basins and small rivers. Thus, the methodology is applied to the Yuvacik dam reservoir, fed by a catchment area of 258 km<sup>2</sup> and located in Turkey, owing to its challenging flood control and water supply operation due to downstream flow constraints. According to the results, stochastic optimization outperforms conventional counterpart by considering uncertainty in terms of flood metrics without discarding water supply purposes. The closed-loop hindcasting experiment scenarios demonstrate the robustness of the system developed against biased information. In conclusion, ensemble streamflows produced from single member can be employed to TB-MPC for better real-time management of a reservoir control system.</p>


Sign in / Sign up

Export Citation Format

Share Document