Determination of the optimal capacity of a reservoir considering the effects of flood control volume change on its performance (case study: Darband dam, Iran)

2014 ◽  
Vol 9 (4) ◽  
pp. 509-518
Author(s):  
R. Shahsavan ◽  
M. Shourian

Water storage using dams is a perfect solution for agricultural, industrial, drinking water supply, flood control, hydroelectric power generation, and other purposes. Integrated management of water resources involves the development, management, protection, regulation and beneficial use of surface- and ground- water resources. The reliability of water supply reservoirs depends on several factors, e.g. the physical characteristics of the reservoir, the time series of river discharge, climatic conditions, the amount of demand, and the method of operation. If a portion of a dam's volume is kept empty for flood control, the confidence values of taking the bottom water demand will be reduced. In this paper, a yield-storage model developed in a MATLAB software environment is used to determine the optimal capacity of Darband dam in northeast Iran (the study phase). The reservoir's performance with respect to demand downstream, e.g. from industry and agriculture, and for potable use, was studied, and the results compared for scenarios in flood control volume change conditions. The results show that, for a capacity of 80 Mm3, the reliability values for meeting agricultural, environmental, and potable water demand are estimated at 0.922, 0.927, and 0.942, respectively. If the reservoir's capacity is changed from 80 to 350 Mm3, the reliability values increase by only about 7%.

2005 ◽  
Vol 32 (1) ◽  
pp. 159-163 ◽  
Author(s):  
Duan Wei

Beijing is located in a semiarid region, and water shortage is a common problem in the city. Along with the rapid increase in water demand, due to fast socioeconomic development and an increase in population, a shortage of water resources and a deterioration of the water environment have become obstacles to sustainable socioeconomic development in Beijing. In the long run, sustainable water resources management, water conservation, and completion of the south to north water diversion project will solve the problem. This paper introduces the water resources situation in Beijing; analyzes future water demand; and discusses the actions of water saving, nontraditional water resources exploitation, wetland construction, and water environment protection. The paper also explains the importance of the south to north water diversion project and the general layout of the water supply strategy, water distribution system, and methods to efficiently use the diverted water in Beijing.Key words: water resources, water supply, water saving, water recycling, water diversion.


Water Policy ◽  
2012 ◽  
Vol 15 (3) ◽  
pp. 364-385 ◽  
Author(s):  
Lynn A. Mandarano ◽  
Robert J. Mason

This paper articulates the complexities of adaptively managing Delaware River water resources to meet shifting priorities of drinking water supply, drought mitigation and flood mitigation, as well as conflicting stakeholder interests. In particular, the paper examines the short-term and long-term programs that comprise the Delaware River Basin Commission's (DRBC) and the 1954 US Supreme Court Decree parties' successful adaptive management approach that seeks to balance the growing list of demands for water resources management, including drinking water supply, drought management, flood control and cold water fisheries protection. Review of the DRBC's adaptive governance approach reveals the critical complexities of designing experimental, yet science-driven management approaches and effectively engaging various sets of stakeholders in the associated decision-making processes.


2013 ◽  
Vol 295-298 ◽  
pp. 2132-2137
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation. As support of food production, analysis of water resources supply and demand balance is an important part and technical support of the construction. According to some relevant calculation formulas on water resources assessment, after forecast of water demand and the calculation of water supply, in the project area of the demonstration construction of whole rural land remediation in Baishan City, the average water availability for many years is 8990.1 thousand m3 each year, in which surface water availability is 7210.6 thousand m3, groundwater availability is 1579.4 thousand m3. Water demand is 5552.4 thousand m3 in 2015, in which water demand for life 4165.2 thousand m3; water demand for agricultural irrigation is 1387.2 thousand m3. Water supply is more than water demand; the results show that there is a slight surplus of water resources in the region. The basic supply-demand balance can be achieved in conditions of the design of water supply project in the project area.


2013 ◽  
Vol 353-356 ◽  
pp. 2943-2947
Author(s):  
Ying Dong ◽  
Xi Jun Wu

This paper analyzed the water resources and its availability distribution regularities in Northern Shaanxi; and the change laws of water consumption and supply in 1980-2010; according to the relevant planning goal and various industry water standard, forecasted the Northern Shaanxi water demand in future. Result shows that 2020 and 2030 water demand respectively is 1.9×109 m3 and 2.6×109 m3 in Northern Shaanxi. So the 1.6×109 m3 of available water resources at this stage can't meet the future requirements.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2009 ◽  
Vol 4 (4) ◽  
Author(s):  
Brendan M. Harley ◽  
Yap Kheng Guan

Singapore's water resources system is a strong illustration of the value of an integrated water resources management in urban enviroments. Today, urban water resources planning and environmental engineering are essential partners in the planning of tomorrow's urban environments - and not just as passive projects unnoticed by the public. In Singapore we can see the specific evolution from the separate development of water catchments and the control of monsoon flooding to the integrated water management strategy as exemplified today in the Marina Barrage. The multi-purpose project boosts Singapore's water supply by creating its first reservoir in the city, helps flood control and enhances the living environment of the city. Marina Barrage presented many interesting challenges in the development of a project whose impact was designed to far transcend the normal functional aspect of a large public works project. This paper will present the many potential public uses that were considered in the planning for the final facility. The motivation is that the 3P (people, public and private) sectors play an important part in sustaining water resources. Instead of designing the Marina Barrage as a conventional functional facility accessible only to operational staff, the project breaks new ground in taking an unconventional design approach. The facility was designed as an open facility to engage and inspire the public to care for water. Features for public education, lifestyle attraction, eating experiences, options for families to relax, play areas for children, attractions for overseas visitors, spaces for dedicated conferences and many more were considered. A multi-functional team of interior designers, landscape architects, researchers, art specialists, lighting specialists, environmentalists, etc was assembled and met continually as the design evolved. These evolving goals had to be integrated into the overall functional characteristics of the barrage. The resulting project is a world-class example of how a project initially conceived for water resources functional purpose can evolve not just into an iconic structure but one whose multi-functional capabilities have attracted huge attention from tourists and the people of Singapore. This is evidenced by more than 250,000 people visiting the facility in its first 6 months of operations, and the many families who spend relaxing time enjoying the various spaces at the Barrage. The evolution of the Marina Barrage in design and operation can act as a lesson for other cities considering similar large flood control or water supply projects. The success of the Marina Barrage's 3P mission indicates how for a relatively little increase in cost these facilities can play a major role in enhancing urban lifestyle in sustainable cities.


Author(s):  
Arezoo Boroomandnia ◽  
Omid Bozorg-Haddad ◽  
Jimmy Yu ◽  
Mariam Darestani

Abstract Fast-growing water demand, population growth, global climate change, and water quality deterioration all drive scientists to apply novel approaches to water resource management. Nanotechnology is one of the state-of-the-art tools in scientists’ hands which they can use to meet human water needs via reuse of water and utilizing unconventional water resources. Additionally, monitoring water supply systems using new nanomaterials provides more efficient water distribution networks. In this chapter, we consider the generic concepts of nanotechnology and its effects on water resources management strategies. A wide range of nanomaterials and nanotechnologies, including nano-adsorbents, nano-photocatalysts, and nano-membranes, are introduced to explain the role of nanotechnology in providing new water resources to meet growing demand. Also, nanomaterial application as a water alternative in industry, reducing water demand in the industrial sector, is presented. Another revolution made by nanomaterials, also discussed in this chapter, is their use in water supply systems for monitoring probable leakage and leakage reduction. Finally, we present case studies that clarify the influence of nanotechnology on water resources and their management strategies. These case studies prove the importance and inevitable application of nanotechnology to satisfy the rising water demand in the modern world, and show the necessity of nanotechnology awareness for today's water experts.


2021 ◽  
Author(s):  
Rubén A. Villar-Navascués ◽  
Sandra Ricart ◽  
Antonio M. Rico-Amorós ◽  
María Hernández-Hernández

<p>Since the middle of the 20th century, urban-tourist development in tourist destinations on the Mediterranean coast has required the creation of complex water supply systems to guarantee a growing water demand. At present, the challenges posed by climate change around the management of water resources requires the implementation of adequate water policies and sustainable environmental solutions to foster the adaptation to a foreseeable future characterized by lower availability of conventional water resources and more recurrent and intense droughts. In this context, the link between the scientific field, the stakeholders from the tourism sector, and the decision-makers is vital to favor viable, effective, and consensual solutions that shift the focus from the objective of guarantee tourist water demand to a sustainability scenario from both an environmental, economic, and social point of view. Therefore, it is relevant to question whether there is a large gap between the actions and focus of attention in each of these three areas (scientific, decision-makers, and stakeholders). In other words, does scientific research related to water consumption by the tourism sector adequately respond to the knowledge needs required by stakeholders and decision-makers to achieve the aforementioned sustainability objectives? Through a literature review, this study addresses the main topics, methodologies, and results related to water consumption in hotels on the Spanish Mediterranean coast and their possible impact on the actions made by managers, decision-makers or stakeholders from the tourism sector. To evaluate the science-policy interface, it has also been made a policy review of the main laws, regulations, and plans developed by the different levels of public administration and other private entities in the tourism sector concerning water consumption in hotels, for the Benidorm case study, located in the southeast of Spain. To identify the measures implemented by stakeholders from the tourism sector to reduce water consumption and their vision about the challenges and barriers in this issue, we have taken into account the results of previous projects in which more than twenty surveys and interviews have been carried out to the hotel managers as well as to the Benidorm hotel association (HOSBEC). Likewise, to contextualize the results of these surveys and interviews, we have analyzed the raw water supply data provided by the entity in charge of this service, the Marina Baja Water Consortium, as well as billing and smart meter data from the hotels, provided by the company in charge of the local water supply service, Hidraqua. The results will make possible to highlight the links and differences found between the problems and research approaches raised from the scientific field, the regulations and plans proposed by the public administration and other private decision-makers and the actions and future challenges identified by the tourism sector in the city of Benidorm. The identification of the existing gaps between the three areas (scientists, policy-makers, and stakeholders) will be useful to reshape the agenda of future research and re-think the role of science when responding to managers and decision-makers’ requests on water management and tourism nexus.</p>


2013 ◽  
Vol 10 (5) ◽  
pp. 6359-6406 ◽  
Author(s):  
N. Voisin ◽  
L. Liu ◽  
M. Hejazi ◽  
T. Tesfa ◽  
H. Li ◽  
...  

Abstract. An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model including a water-demand model is coupled offline with a land surface hydrology – routing – water resources management model. In this study, a spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrated reasonable ability to represent the historical flow regulation and water supply over the Midwest (Missouri, Upper Mississippi, and Ohio). Implications for future flow regulation, water supply, and supply deficit are investigated using a climate change projection with the B1 emission scenario, which affects both natural flow and water demand. Over the Midwest, changes in flow regulation are mostly driven by the change in natural flow due to the limited storage capacity over the Ohio and Upper Mississippi River basins. The changes in flow and demand have a combined effect on the Missouri summer regulated flow. The supply deficit seems to be driven by the change in flow over the region. Spatial analysis demonstrates the relationship between the supply deficit and the change in demand over urban areas not along a main river or with limited storage, and over areas upstream of groundwater dependent fields, which therefore have an overestimated surface water demand.


Sign in / Sign up

Export Citation Format

Share Document