Electrical Characteristics of Atmospheric Air Corona Plasma by Multi-pin Electrodes

2019 ◽  
Vol 14 (3) ◽  
pp. 226
Author(s):  
Khanit Matra ◽  
Yottana Tanakaran ◽  
Teerawat Temponsub ◽  
Suphanat Nimbua ◽  
Phanuwat Thab-in ◽  
...  
Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


Author(s):  
B. S. Soroka

The article considers the role and place of water and water vapor in combustion processes with the purpose of reduction the effluents of nitrogen oxides and carbon oxide. We have carried out the complex of theoretical and computational researches on reduction of harmful nitrogen and carbon oxides by gas fuel combustion in dependence on humidity of atmospheric air by two approaches: CFD modeling with attraction of DRM 19 chemical kinetics mechanism of combustion for 19 components along with Bowman’s mechanism used as “postprocessor” to determine the [NO] concentration; different thermodynamic models of predicting the nitrogen oxides NO formation. The numerical simulation of the transport processes for momentum, mass and heat being solved simultaneously in the united equations’ system with the chemical kinetics equations in frame of GRI methane combustion mechanism and NO formation calculated afterwards as “postprocessor” allow calculating the absolute actual [CO] and [NO] concentrations in dependence on combustion operative conditions and on design of furnace facilities. Prediction in frame of thermodynamic equilibrium state for combustion products ensures only evaluation of the relative value of [NO] concentration by wet combustion the gas with humid air regarding that in case of dry air – oxidant. We have developed the methodology and have revealed the results of numerical simulation of impact of the relative humidity of atmospheric air on harmful gases formation. Range of relative air humidity under calculations of atmospheric air under impact on [NO] and [CO] concentrations at the furnace chamber exit makes φ = 0 – 100%. The results of CFD modeling have been verified both by author’s experimental data and due comparing with the trends stated in world literature. We have carried out the complex of the experimental investigations regarding atmospheric air humidification impact on flame structure and environmental characteristics at natural gas combustion with premixed flame formation in open air. The article also proposes the methodology for evaluation of the nitrogen oxides formation in dependence on moisture content of burning mixture. The results of measurements have been used for verification the calculation data. Coincidence of relative change the NO (NOx) yield due humidification the combustion air revealed by means of CFD prediction has confirmed the qualitative and the quantitative correspondence of physical and chemical kinetics mechanisms and the CFD modeling procedures with the processes to be studied. A sharp, more than an order of reduction in NO emissions and simultaneously approximately a two-fold decrease in the CO concentration during combustion of the methane-air mixture under conditions of humidification of the combustion air to a saturation state at a temperature of 325 K.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3153-3161
Author(s):  
Marco Antonio Juárez Sánchez ◽  
Miguel Ángel Meléndez Lira ◽  
Celestino Odín Rodríguez Nava

AbstractDrug contamination in water is one of the current fields of study. Since 1990, the presence of drugs in drinking water has been a concern to scientists and public. In Mexico, these organic compounds are not efficiently removed in wastewater treatment plants; therefore, alternative methodologies have been studied that allow these compounds to have a high percentage of degradation or be completely degraded. One example of these techniques is heterogeneous photocatalysis which has obtained positive results in the degradation of drugs using ZnO nanoparticles. These are commonly selected for their electrical characteristics, even though they disperse in water and an additional unit operation is required to separate them from the liquid medium. To eliminate drugs with nano particles in a single stage, polycaprolactone-based membranes with adhered ZnO nanoparticles, by means of electrospinning, were prepared to degrade drugs such as diclofenac. The technique used has shown to efficiently break down diclofenac in 4 hours according to the capillary electrophoresis readings.


Author(s):  
Satoshi Taniguchi ◽  
Norihiko Yamaguchi ◽  
Takao Miyajima ◽  
Masao Ikeda

1981 ◽  
Vol 4 ◽  
Author(s):  
T. J. Stultz ◽  
J. F. Gibbons

ABSTRACTStructural and electrical characterization of laser recrystallized LPCVD silicon films on amorphous substrates using a shaped cw laser beam have been performed. In comparing the results to data obtained using a circular beam, it was found that a significant increase in grain size can be achieved and that the surface morphology of the shaped beam recrystallized material was much smoother. It was also found that whereas circular beam recrystallized material has a random grain structure, shaped beam material is highly oriented with a <100> texture. Finally the electrical characteristics of the recrystallized film were very good when measured in directions parallel to the grain boundaries.


2002 ◽  
Vol 716 ◽  
Author(s):  
D. Jacques ◽  
S. Petitdidier ◽  
J.L. Regolini ◽  
K. Barla

AbstractOxide/Nitride dielectric stack is widely used as the standard dielectric for DRAM capacitors. The influence of the chemical cleaning prior to the stack formation has been studied in this work. As a result, morphological data such as stack surface roughness (Atomic Force Microscopy) and silicon nitride (SiN) incubation time for growth are comparable for all the studied cases on <Si>. However, Tof-SIMS exhibits different oxygen content at the Si/stack interface following the different chemical treatments. Electrical measurements show comparable C-V and I-V results, for the same Equivalent Oxide Thickness (same capacitance at strong accumulation i.e.-3V) while the different studied interfaces bring different interface states density with lower values for higher interfacial oxygen content. For DRAM applications, a clear improvement in electrical characteristics is obtained under low interfacial oxygen content conditions. Results are compared in embedded-DRAM cells for which we developed an industrially compatible dielectric deposition sequence to obtain minimum leakage current with maximum specific capacitance and no particular linking constraints.


2014 ◽  
Vol E97.C (5) ◽  
pp. 413-418 ◽  
Author(s):  
Dae-Hee HAN ◽  
Shun-ichiro OHMI ◽  
Tomoyuki SUWA ◽  
Philippe GAUBERT ◽  
Tadahiro OHMI

Sign in / Sign up

Export Citation Format

Share Document