scholarly journals Damage diagram of blast test results for determining reinforced concrete slab response for varying scaled distance, concrete strength and reinforcement ratio

2021 ◽  
Vol 93 (1) ◽  
Author(s):  
FAUSTO B. MENDONÇA ◽  
GIRUM S. URGESSA ◽  
LUIZ E.N. ALMEIDA ◽  
JOSÉ A.F.F. ROCCO
2012 ◽  
Vol 249-250 ◽  
pp. 1063-1068
Author(s):  
Qian Ma ◽  
Dan Wu ◽  
Xu Dong Shi ◽  
Xiu Gen Jiang

The influence of the structure parameters on the anti-impact performances of the reinforced concrete slab is studied in the article. The reinforced concrete model is established by using ANSYS 13.0/LS-DYNA and nonlinear finite element theory and the parameterized modeling is achieved. The results show that the increase of the thickness of the slab and the steel bar diameter result in the enhancement of impact resistant capability of the slab; a appropriate quantity of reinforcement is significant; Increasing the concrete strength has a distinct impact on the slab’s impact resistance when using relatively low strength concrete. However the influence becomes weak after the concrete strength comes to C60 and higher. The fruits are useful to the designing of reinforced concrete slabs.


Author(s):  
Jukka Kähkönen ◽  
Pentti Varpasuo

Reinforced concrete wall subjected to an impact by a hard steel missile with a mass of 47 kg and an impact velocity of 135 m/s was one case study in the IRIS 2010 benchmark exercise in OECD/NEA/CSNI/IAGE framework. The wall had dimensions of 2m × 2m × 0.25m and it was simply supported. The perforation of the missile was expected. Fortum Power and Heat Ltd. participated in the benchmark. In this paper, we present our modeling and blind prediction of the benchmark case. The test results of the benchmark were released after the predictions were made. Based on the result comparison, we concluded that our model gave conservative results.


2020 ◽  
Vol 10 (10) ◽  
pp. 3570
Author(s):  
Romualdas Kliukas ◽  
Ona Lukoševičienė ◽  
Arūnas Jaras ◽  
Bronius Jonaitis

This article explores the influence of transverse reinforcement (spiral) and high-strength longitudinal reinforcements on the physical-mechanical properties of centrifuged annular cross-section elements of concrete. The test results of almost 200 reinforced, and over 100 control elements are summarizing in this article. The longitudinal reinforcement ratio of samples produced in the laboratory and factory varied from 1.0% to 6.0%; the transverse reinforcement ratio varied from 0.25% to 1.25%; the pitch of spirals varied from 100 mm to 40 mm and the concrete strength varied from 25 MPa to 60 MPa. Experimental relationships of coefficients for concrete strength, moduli of elasticity and limits of the longitudinal strain of centrifuged concrete in reinforced concrete structures in short-term concentrically compression were proposed.


The issues of designing a steel-reinforced concrete floor using bent steel profiles are considered. The steel-reinforced concrete flooring consists of a monolithic reinforced concrete slab arranged on a removable formwork, and steel bent profiles. The removable formwork during the concreting process rests on steel beams without additional mounting posts in the floor span. Steel beams accept the weight of the formwork and concrete during the pouring, working on bending. After concrete strengthening, they mainly work on stretching as part of composite steel-reinforced concrete structure. The article has identified the advantages and disadvantages of steel-reinforced concrete flooring with the use of light steel thin-walled bent profiles. Checking the strength of the beam at the concreting stage and evaluating the load-bearing capacity of the floor after the concrete strength is set confirm the performance of this structure. Using the regulatory methodology for SP 266.1325800.2016, the area of implementation of steel and concrete flooring with CFS beams and the nomenclature of applied steel beams have been established. For practical application of the presented design, it is recommended to conduct experimental and theoretical research and develop engineering methods.


2014 ◽  
Vol 501-504 ◽  
pp. 1048-1052 ◽  
Author(s):  
Xiao Jin Li ◽  
Yi Yan Lu ◽  
Na Li

A total of four two-way reinforced concrete slabs strengthened with three methods were tested. The four test specimens were one unstrengthened reinforced concrete slab (control), one slab strengthened with CFRP strips, one slab strengthened with steel sheets, and one slab strengthened with an innovative method of applying CFRP strips and steel sheets combination bonding to the tension face of the slab. The test results show the CFRP-Steel combination strengthened technique is a rapid and effective strengthening technique for two-way RC slab. The increase in ultimate capacities of CFRP-Steel combination strengthened slab is 221.1% over the control slab, 84.4% over the CFRP-strengthened slab, and 45.2% over the steel-strengthened slab. In addition, the CFRP-Steel combination strengthened slab exhibited superior ductility than the CFRP-strengthened slab.


2011 ◽  
Vol 243-249 ◽  
pp. 567-572
Author(s):  
Hao Sheng Gu ◽  
Da Yu Zhu

This paper attempts to reveal the flexural behaviors of concrete slab reinforced with GFRP bars. Through flexural test, the deformation process and failure mode of concrete slabs reinforced with GFRP bars and steel bars are examined, respectively. The deflection, cracking load, ultimate load and concrete strain are compared between two kinds of concrete slabs. From the test results, it is clarified that the moment-deflection curve of GFRP reinforced concrete slab can be divided into two stages. Before concrete cracks the behaviors of two kinds of concrete slabs are almost the same. However, the deflection of concrete slabs reinforced with GFRP bars increases much faster after cracking and the stress-strain diagram is linear up to rupture with no discernible yield point. The ultimate load of concrete slabs reinforced with GFRP bars is 1.2 times of that of concrete slabs reinforced with steel bars. Based on the test results, finite element analysis is performed in order to study the influence of reinforcement ratio. Parameter analysis shows that the flexural rigidity of GFRP reinforced concrete slabs increases with the reinforcement ratio after cracking.


2014 ◽  
Vol 507 ◽  
pp. 291-294
Author(s):  
Zhi Zhong Li ◽  
De Gao Tang ◽  
Wei Wei Li ◽  
Zhi Fang Yan

Reinforced concrete panels were tested explosion for reinforced concrete slab in the dynamic response under blast loading. Dimensions of 1300mm×1300mm×50mm plates under different reinforcement ratio were designed. Explosion test was carried out for three different batches of reinforcement ratio reinforced concrete slab in the explosion simulator. The load was calculated using empirical formulas. Blast loading time curve was obtained by the explosion test and the correctness of the numerical simulation method was verified. The results indicate that reinforced concrete slab under blast loading is different from static damage destruction. Diagonal cracks appear on plat under the blast loading destroyed. When the peak load is large, a large square cracks plate was appeared in the middle of the plate and accompanied diagonal cracks. When the peak load is small, diagonal cracks develop fully, square cracks were smaller.


2012 ◽  
Vol 39 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Farshad Habibi ◽  
Erin Redl ◽  
Michael Egberts ◽  
William D. Cook ◽  
Denis Mitchell

This paper investigates the post-punching behaviour of reinforced concrete slab–column connections with a goal of providing adequate structural integrity reinforcement. The test results of seven interior slab–column connections are presented. A study was made of the effects of slab thickness, length of structural integrity reinforcing bars, distribution of structural integrity reinforcement in slabs with rectangular columns, and the placement of structural integrity reinforcement in slabs with drop panels. Results from this test series and other researchers were compared with predictions using the CSA A23.3-04 design equations for both punching shear and post-punching resistance. The test results demonstrated that the provision of structural integrity reinforcement in accordance with the requirements of CSA A23.3-04 resulted in significant post-punching resistance and the design equations provide a reasonable estimate of this resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Guoxue Zhang ◽  
Ying Zhang ◽  
Yangyang Zhou

Experimental studies on fatigue behavior of reinforced concrete slab with stainless steel rebar and carbon steel rebar have shown that, at the same reinforcement ratio, the slope of the deflection-cycle number curves of stainless steel-reinforced concrete slab is lower than that of ordinary steel-reinforced concrete slab. The higher the reinforcement ratio is, the smaller the maximum crack width would be. Higher stress level contributes to larger deflection and reinforcement strain in midspan and shorter fatigue life. Compared to the ordinary steel-reinforced concrete slab, the stainless steel-reinforced concrete slab shows narrower maximum crack under the same number of loading cycles. Less significant midspan deflection, reinforcement strain, and longer fatigue life are observed in stainless steel-reinforced concrete slab at the same reinforcement ratio, stress level, and cycling time. With the increase of reinforcement ratio, the deflection and fatigue life extended.


Civil Engineering in the present days undergoes sea changes both in theory and practice. Smart materials, prefabricated structures, and architectural elements use of light weight materials and similar other activities are taking affront seat in the advancement of construction. One such advancement is bendable concrete in the civil engineering indutries. Our study is about fabrication and experimental investigation of this bendable concrete which is highly an advanced and sophisticated concrete technology. Only a few works are reported as of now as it is now a new technology. In view of this even a small amount of research work will assume much significance. In our project work we have adopted this new found technique. We have used the following materials to make the specimens. Metallic fibre mesh reinforced concrete slab  Plastic fibre reinforced concrete slab  Glass fibre reinforced concrete slab  Reinforced concrete slab for comparison purpose To demonstrate the superiority of bendable concrete, vis-a-vis reinforced concrete, reinforced and plain cement concrete slabs were also cast for comparison purposes.On testing and comparison with each one of Plastic Fibre embedded with concrete, Metallic Fibre embedded with concrete and Glass Fibre based bendable concrete it was found the superiority of strength identification vis-a- vis the conventional concrete strength. In fact the strength is much improved around the same time stupendous ductility is achieved. Further the four specimens tested gave very good performance characteristics of bendable concrete..


Sign in / Sign up

Export Citation Format

Share Document