scholarly journals Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. II - Physical Compartments and Carbon Management Index

2015 ◽  
Vol 39 (3) ◽  
pp. 895-902 ◽  
Author(s):  
Otávio dos Anjos Leal ◽  
Rosa Maria Vargas Castilhos ◽  
Eloy Antonio Pauletto ◽  
Luiz Fernando Spinelli Pinto ◽  
Clenio Nailto Pillon ◽  
...  

Soils constructed after mining often have low carbon (C) stocks and low quality of organic matter (OM). Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC) stocks, C distribution in physical fractions of OM and the C management index (CMI) of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactylon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC) and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF) of OM were determined. The CMI components: carbon pool index (CPI), lability (L) and lability index (LI) were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

2015 ◽  
Vol 39 (3) ◽  
pp. 886-894 ◽  
Author(s):  
Otávio dos Anjos Leal ◽  
Rosa Maria Vargas Castilhos ◽  
Eloy Antonio Pauletto ◽  
Luiz Fernando Spinelli Pinto ◽  
Flávia Fontana Fernandes ◽  
...  

After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.


2015 ◽  
Vol 39 (1) ◽  
pp. 232-242 ◽  
Author(s):  
Jean Dalmo de Oliveira Marques ◽  
Flávio Jesus Luizão ◽  
Wenceslau Geraldes Teixeira ◽  
Max Sarrazin ◽  
Sávio José Filgueira Ferreira ◽  
...  

Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Paloma Bescansa ◽  
Iñigo Virto ◽  
Oihane Fernández-Ugalde ◽  
María José Imaz ◽  
Alberto Enrique

The behaviour of earthworms, their role in organic matter incorporation into the soil, and the influence of aridity in such processes in arid and semiarid regions have scarcely been studied. In this study, physico-chemical analyses of the casts and the surrounding no-till agricultural soils of three experimental sites representing an aridity gradient in Navarre (NW Spain) were done. The casts were formed by the activity of the only anecic species,Scherotheca gigas(Dugès, 1828), ubiquitous in no-till soils in this region. We observed a significant depletion of clay and higher concentration of total organic C and labile C in the form of particulate organic matter (POM) in the casts as compared to the surrounding soil, suggesting selective ingestion of soil byS. gigas. This, together with the observation of increased concentration in POM with increasing aridity, suggests a major role of this species in the observed progressive gains of organic C stocks in no-till soils in the region.


2019 ◽  
Vol 447 (1-2) ◽  
pp. 521-535
Author(s):  
Nina L. Friggens ◽  
Thomas J. Aspray ◽  
Thomas C. Parker ◽  
Jens-Arne Subke ◽  
Philip A. Wookey

Abstract Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 820 ◽  
Author(s):  
K. A. Conrad ◽  
R. C. Dalal ◽  
D. E. Allen ◽  
R. Fujinuma ◽  
Neal W. Menzies

Quantifying the size and turnover of physically uncomplexed soil organic matter (SOM) is crucial for the understanding of nutrient cycling and storage of soil organic carbon (SOC). However, the C and nitrogen (N) dynamics of SOM fractions in leucaena (Leucaena leucocephala)–grass pastures remains unclear. We assessed the potential of leucaena to sequester labile, free light fraction (fLF) C and N in soil by estimating the origin, quantity and vertical distribution of physically unprotected SOM. The soil from a chronosequence of seasonally grazed leucaena stands (0–40 years) was sampled to a depth of 0.2m and soil and fLF were analysed for organic C, N and δ13C and δ15N. On average, the fLF formed 20% of SOC and 14% of total N stocks in the upper 0.1m of soil from leucaena rows and showed a peak of fLF-C and fLF-N stocks in the 22-year-stand. The fLF δ13C and fLF δ15N values indicated that leucaena produced 37% of fLF-C and 28% of fLF-N in the upper 0.1m of soil from leucaena rows. Irrespective of pasture type or soil depth, the majority of fLF-C originated from the accompanying C4 pasture-grass species. This study suggests that fLF-C and fLF-N, the labile SOM, can form a significant portion of total SOM, especially in leucaena–grass pastures.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 933
Author(s):  
Ali Khakbaz ◽  
Daniele Goi ◽  
Carlo Bravo ◽  
Marco Contin

Land application of sewage sludge on agricultural soils can be sustainable only if pollutant contents and organic matter quality meet the requirements imposed by minimization of environmental risks. This study investigated the degradation of linear alkylbenzene sulfonates (LAS) and extractable organic halogens (EOX) and the formation of humic substances (HS) during the thickening and storage phases of sewage sludge treatment. Changes in spectroscopic properties (UV-Vis, FT-IR, and excitation-emission matrix (EEM) fluorescence) of HS were also evaluated to assess the occurrence of biological activities during these curing phases of sewage sludge (SS). Humic acids (HA), fulvic acids (FA), EOX, and LAS were extracted from sewage sludge sampled from four municipal wastewater treatment plants of different size and treatment sequence, before and after 90 days of aerobic or anaerobic storage. During storage, the loss of organic C in the SS ranged from almost null to 31%. No significant changes of FA were registered, whereas HA increased in almost all samples, up to 30%. The amount of humic substances synthesized during storage correlated with the percentage of C lost. Spectroscopic changes of FA and HA showed an increase in their aromaticity, with a corresponding decrease in the aliphatic contribution. These changes show the improved agronomical quality of SS. LAS decreased during storage up to 30%, surprisingly more under anaerobic than aerobic conditions, whereas EOX decreased significantly in all samples, even up to 81%. In conclusion, although storage may be normally considered not influencing the quality of SS, their organic matter quality improved and contamination decreased during 90 days of storage, whatever the conditions of oxygen availability applied.


2000 ◽  
Vol 80 (3) ◽  
pp. 429-435 ◽  
Author(s):  
D. Curtin ◽  
F. Selles ◽  
H. Wang ◽  
R. P. Zentner ◽  
C. A. Campbell

Planting of cultivated land with perennial forages may increase C sequestration in soil organic matter and contribute to atmospheric CO2 mitigation strategies. However, little is known of the effectiveness of introduced grasses in restoring organic C in cultivated soils of the Canadian prairies. Our objective was to evaluate the C sequestration potential of crested wheatgrass (CWG) (Agropyron cristatum L. Gaertn.), a widely introduced, early-season grass. In 1995 and 1996, we measured soil CO2 fluxes, C inputs in plant material and total soil C under CWG and a fallow-wheat (Triticum aestivum L.)-wheat rotation (F-W-W). These were two of the treatments in a replicated crop rotation experiment initiated in 1987 in southwestern Saskatchewan on a medium-textured soil that had previously been under long-term wheat production. Average to above-average growing season (1 May to 31 July) precipitation in 1995–1996 resulted in annual inputs of C in wheat residues of 3000–4500 kg ha−1. Growth of CWG, which was hayed and removed, was relatively poor in both years, but especially in 1995 when dry matter yield was only 1300 kg ha−1. For the 1988–1996 period, there was a strong correlation (R2 = 0.81; P < 0.001) between CWG yield and precipitation received in May, showing the importance of early spring rains determining CWG yield and C inputs to the soil. Carbon inputs under CWG (1200 kg ha−1 in 1995 and 2400 kg ha−1 in 1996) were less than under wheat but CO2-C emissions were similar under CWG and wheat. Soil C measurements in fall 1996 confirmed that CWG did not gain C relative to the F-W-W rotation. Although failure of CWG soil to store more C than cultivated soil may be partly because weather conditions during the experiment were more favourable for wheat than CWG, our results cast doubt on the ability of CWG to restore C stocks in prairie soils degraded by long-term cropping. Key words: Carbon sequestation, carbon dioxide emissions, wheat, crested wheatgrass, fallow


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 394
Author(s):  
Anna Kocira ◽  
Mariola Staniak ◽  
Marzena Tomaszewska ◽  
Rafał Kornas ◽  
Jacek Cymerman ◽  
...  

The benefits of conservation practices increased the interest of farmers in the cultivation of cover crops (CCs). This review aims to present and analyze the state of the art on the cultivation of legume CCs, including their importance in protecting crops against weeds, as well as their effects on organic matter and nitrogen content in the soil, physical and biological properties of the soil, and its erosion. The multi-purpose character of legume CCs is visible in their positive effect on reducing weed infestation, but also on the soil: reducing its compaction and erosion, improving its structural and hydraulic properties, increasing the content of organic matter and activity of soil microorganisms, or increasing its nitrogen content due to symbiotic N2 fixing. This review demonstrates that a wider use of legume CCs in organic farming is needed. The benefits of legume CCs for successive crops in these cultivation conditions, both in terms of inhibiting weed populations and improving fertility and soil properties, also need to be identified. Further research is also needed to determine the potential impact of legume CCs on the improvement of the quality of degraded soils, or those with less favorable physicochemical properties.


Soil Research ◽  
2016 ◽  
Vol 54 (4) ◽  
pp. 430 ◽  
Author(s):  
Rafaela Watanabe ◽  
Getulio Coutinho Figueiredo ◽  
Alvaro Pires da Silva ◽  
Júlio César Lima Neves ◽  
Teógenes Senna de Oliveira

Agroforestry systems provide many environmental benefits in semi-arid regions; however, trampling by cattle, and agricultural practices, can degrade physical quality of the soil. The aim of this study was to evaluate the degree of compaction and the compression behaviour of a Luvisol after 14 years under agro-silvopastoral (ASP) and silvopastoral systems (SILV), compared with a soil under natural vegetation (NV). We evaluated the degree of soil compactness, compaction index, pre-consolidation pressure, maximum bulk density, critical water content and the stocks of total organic carbon (C), organic matter (OM), C in light organic matter (LOM), and nitrogen (N) in LOM. The results indicated that agroforestry systems change the compressive behaviour of the soil, increasing maximum bulk density (P < 0.05) and reducing critical water content (P < 0.05). Despite the increases in maximum bulk density, changes induced by agroforestry system did not affect the pore space, as shown by similar values for degree of compactness (P > 0.05) under ASP, SILV and NV. This suggests a change in the quality of OM, as evidenced by the lower values for stocks of N in LOM (P < 0.10) and total organic C (P < 0.05) under ASP and SILV, whereas pre-consolidation pressure was unaffected (P > 0.05). After 14 years, the degree of compactness and load-bearing capacity of the soils under ASP and SILV had not increased, being suitable for plant growth.


1994 ◽  
Vol 74 (2) ◽  
pp. 131-138 ◽  
Author(s):  
E. Bremer ◽  
H. H. Janzen ◽  
A. M. Johnston

Crop management influences the quantity and quality of organic matter in agricultural soils. A crop rotation study established at Lethbridge, Alberta in 1951 was sampled in September 1992 to determine the effect of crop management on total, light fraction and mineralizable (10-wk) organic matter contents. Spring wheat was the dominant cropping system; treatments examined include fallow frequency, forage hay production in rotation, manure amendment, N fertilizer application, and native grass. The two latter treatments were introduced in 1985. Total and light fraction organic matter did not vary among phases of the rotation whereas mineralized C tended to be lowest during and shortly after a fallow phase. When averaged across rotation phases, total, light fraction, and mineralized organic matter were enhanced by reduced fallow frequency, manure additons, hay production and native grass. Highest concentrations of total and labile organic concentrations in the 0- to 7.5-cm soil depth were generally found in the continuously-cropped wheat and native grass treatments. Hay production significantly increased soil organic matter in the 15- to 30-cm soil depth. Nitrogen fertilization did not increase soil organic matter in this study, likely because of minimal yield response over the treatment period. Sensitivity of the various indicators to treatment [(highest–lowest)/lowest] was 0.2 for total, 2.5 for light fraction, and 1.5 for mineralized soil organic C. Light fraction organic matter was the most robust indicator of management-induced effects on soil organic matter. Key words: Labile organic matter, fallow frequency, forage hay production, manure, native grass


Sign in / Sign up

Export Citation Format

Share Document