scholarly journals Deposition of AA5083-H112 Over AA2024-T3 by Friction Surfacing

2018 ◽  
Vol 23 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Samuel Silvério ◽  
Hennin Krohn ◽  
Viktoria Fitseva ◽  
Nelson Guedes de Alcântara ◽  
Jorge Fernandez dos Santos

Abstract Friction surfacing (FS) is an advanced solid state process in surface modification with increasing applications in reclaiming worn parts, hardfacing and corrosion protection. The advantages of the process are that materials are deposited in the solid state and the resultant forged microstructure which leads to enhanced mechanical properties. As no melting takes place, the process allows joining of dissimilar materials while avoiding several fusion related problems. The present study addresses the deposition of AA5083-H112 coatings over AA2024-T3 substrates focusing on the influence of the main process parameters such as axial force, rotational speed and deposition speed, in the mechanical properties of the deposits. A performance and geometric analysis of the depositions are also presented. Sound aluminum coatings were produced; plastic deformation and heat generation promotes a dynamic recrystallization of the anisotropic consumable rod, resulting in a fine and homogeneous deposit. The coating presented an increase in ultimate tensile strength and failure deformation of 9% and 6%, respectively. Deposition efficiency between 25 and 50% were obtained, with a maximum of 48% average efficiency observed with 800 RPM, 12 kN and 16 mm/s.

2015 ◽  
Vol 830-831 ◽  
pp. 135-138 ◽  
Author(s):  
K. Udaya Bhat ◽  
Nithin ◽  
Suma Bhat ◽  
Sudeendran

Friction surfacing is a solid state process and it is amenable for deposition of aluminum on steel. In this investigation, the mild steel surface was coated with a layer of aluminum using friction surfacing route. The aluminum thickness was in the range of 40-50 μm. It was followed by a heat treatment step to convert aluminum layer in to an aluminide layer. Heat treatment was done in open atmosphere at 700 °C for 2 hours. Microstuctural analysis showed that the aluminide layer is mainly made of Fe2Al5 and Fe4Al13, FeAl and Fe3Al are minor in fraction. Formation of Fe2Al5 is discussed. The aluminide layer also has some amount of porosities.


2011 ◽  
Vol 391-392 ◽  
pp. 559-563
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Li Hua Wen ◽  
Hong Bo Li

AZ31B magnesium alloys recycled by solid-state process from oxidized chip were extruded repeately. Microstructures and mechanical properties of recycled alloys for different extrusion times were studied. With the increasing extrusion times, the breaking degree and homogeneity of oxide increase and stream line feature of oxide become less obvious. Second extrusion make dynamic recrystallization microstructure of recycled alloy become more homogeneous and fine, but the microstructure is not refined furtherly after 3 and 4 times extrusion. The ultimate tensile strength increases with the increasing extrusion time, which resulting from the microstructure evolution during repeating extrusion and the enhanced bonding between oxide and magnesium alloy matrix. The elongation to failure of recycled alloy increases after second extrusion and continuously decreases after 3 and 4 time extrusion. This is determined not only by the variation of dynamic recrystallization microstructure and bonding strength between chips but also by the distribution status of oxide.


2007 ◽  
Vol 539-543 ◽  
pp. 1656-1661
Author(s):  
Yasumasa Chino ◽  
Mamoru Mabuchi

Superior mechanical properties of the recycled specimen by solid-state recycling were introduced at first. AZ31 Mg machined chips were recycled by extrusion at 673 K with the different extrusion ratios. The oxide contaminants were dispersed more uniformly in the recycled specimen with the high extrusion ratio (1600:1). There was a remarkable increase in tensile strength and 0.2% yield stress for the recycled specimen with the high extrusion ratio compared with an extrusion reference subjected to the same deformation history. Next, superior corrosion resistance of the recycled specimen was introduced. The recycled specimen with low extrusion ratio (45:1) possessed superior corrosion resistance compared with the extrusion reference. The enhancement of corrosion resistance for the recycled specimens was attributed to the presence of oxide contaminants which were distributed parallel to the extrusion direction.


2016 ◽  
Vol 861 ◽  
pp. 236-240 ◽  
Author(s):  
Zheng Lin Du ◽  
Ming Jen Tan ◽  
Jun Feng Guo ◽  
Jun Wei

Friction Stir Processing is a solid state process with the ability to modify microstructure and refine grain sizes of the material without melting and uniformly disperse reinforcement particles in the material matrix resulting in further improvements in the mechanical properties. In this study, it was used to disperse Al2O3 reinforcement particles of different sizes. Uniform dispersion of the reinforcements was achieved in the aluminium matrix with significant reduction in grain size were observed via SEM and EBSD. Improvement in Vicker’s micro hardness was observed after FSP.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 805
Author(s):  
Huda M. Sabbar ◽  
Zulkiflle Leman ◽  
Shazarel B. Shamsudin ◽  
Suraya Mohd Tahir ◽  
Che N. Aiza Jaafar ◽  
...  

Solid-state recycling is a direct conversion method for producing metal chips, whereas the materials are plastically deformed into the final product without melting, offering lower energy consumption and metal waste. This technique was reported for fabricating aluminium-zirconium oxide (Al-ZrO2) composite and it was widely used to avoid metal chips bounding at high temperatures during the extrusion process. Aluminium alloy (AA7075) is known for its high yield strength of more than 500 MPa under optimum ageing conditions. However, AA7075 can be further reinforced by zirconium oxide nanoparticles when needed for high-performance applications. Hot extrusion is used to obtain better mechanical properties of composite materials. The equal channel angular pressing (ECAP), a severe plastic deformation technique, was recently used to produce bulk and light recycled metal chips, such as porosity-free and ultra-fine-grained aluminium nanocomposites (ANCs). Heat treatments (HT) and ECAP post hot extrusion are mostly incorporated to improve tribological and mechanical properties and aluminium nanocomposite bonding efficiency. In this review, ANCs’ fabrication by the hot extrusion technique and the effects of ZrO2 nanoparticle are duly summarised and discussed. Furthermore, this review emphasises the importance of using HT and ECAP techniques to acquire better metal alloy incorporation, such as AA7075-ZrO2. Interestingly, owing to the lightweight properties and superior performance of AA7075-ZrO2, it was reported to be suitable for fabricating many drones’ parts, military equipment, and some other promising applications.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


2021 ◽  
pp. 100184
Author(s):  
Gyanendra Bhatta ◽  
Luis De Los Santos Valladares ◽  
Xinggang Liu ◽  
Zhaojun Ma ◽  
A. Bustamante Domínguez ◽  
...  

2021 ◽  
Vol 12 (16) ◽  
pp. 5818-5824
Author(s):  
Nattapol Ma ◽  
Soracha Kosasang ◽  
Atsushi Yoshida ◽  
Satoshi Horike

Melt-quenched coordination polymer glass shows exclusive H+ conductivity (8.0 × 10−3 S cm−1 at 120 °C, anhydrous) and optimal mechanical properties (42.8 Pa s at 120 °C), enables the operation of an all-solid-state proton battery from RT to 110 °C.


Sign in / Sign up

Export Citation Format

Share Document